設(shè)A,B,C球面上的三個(gè)點(diǎn),且在同一平面內(nèi),AB=BC=CA=6,球心到該平面的距離是球半徑的一半,則球的體積是
 
分析:設(shè)出球的半徑,解出△ABC的中心到頂點(diǎn)的距離,然后求出球的半徑.即可求出球的體積.
解答:解:設(shè)球的半徑為r,精英家教網(wǎng)
∵AB=BC=CA=6,
∴球心O在三角形ABC的射影是三角形ABC的中心D.
則OD=
r
2
,
則AD=
2
3
AE=
2
3
×
3
2
×6=2
3
,
∴OA2=OD2+AD2
r2=
r2
4
+12
,
3
4
r2=12
,r2=16,
∴球的半徑r=4,
∴球的體積為
4
3
×π×43=
256
3
π

故答案為:
256
3
π
;.
點(diǎn)評(píng):本題考查球的半徑以及球的體積的求法,利用條件求出球的半徑是解決本題的關(guān)鍵,考查空間想象能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2008•上海一模)如圖,正四棱錐P-ABCD底面的四個(gè)頂點(diǎn)A,B,C,D在球O的同一個(gè)大圓上,點(diǎn)P在球面上,且已知VP-ABCD=
163

(1)求球O的表面積;
(2)設(shè)M為BC中點(diǎn),求異面直線AM與PC所成角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2010•成都一模)如圖,設(shè)A、B、C是球O面上的三點(diǎn),我們把大圓的劣弧
BC
、
CA
、
AB
在球面上圍成的部分叫做球面三角形,記作球面三角形ABC,在球面三角形ABC中,OA=1,設(shè)
BC
=a,
CA
=b,
AB
=c,a,b.c∈(0,π)
,二面角B-OA-C、
C-OB-A、A-OC-B的大小分別為α、β、γ,給出下列命題:
①若α=β=γ=
π
2
,則球面三角形ABC的面積為
π
2
;
②若a=b=c=
π
3
,則四面體OABC的側(cè)面積為
π
2
;
③圓弧
AB
在點(diǎn)A處的切線l1與圓弧
CA
在點(diǎn)A處的切線l2的夾角等于a;
④若a=b,則α=β.
其中你認(rèn)為正確的所有命題的序號(hào)是
①②④
①②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年四川省成都市高考數(shù)學(xué)一模試卷(文科)(解析版) 題型:解答題

如圖,設(shè)A、B、C是球O面上的三點(diǎn),我們把大圓的劣弧在球面上圍成的部分叫做球面三角形,記作球面三角形ABC,在球面三角形ABC中,OA=1,設(shè),二面角B-OA-C、
C-OB-A、A-OC-B的大小分別為α、β、γ,給出下列命題:
①若,則球面三角形ABC的面積為;
②若,則四面體OABC的側(cè)面積為
③圓弧在點(diǎn)A處的切線l1與圓弧在點(diǎn)A處的切線l2的夾角等于a;
④若a=b,則α=β.
其中你認(rèn)為正確的所有命題的序號(hào)是   

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年四川省成都市高考數(shù)學(xué)一模試卷(理科)(解析版) 題型:解答題

如圖,設(shè)A、B、C是球O面上的三點(diǎn),我們把大圓的劣弧在球面上圍成的部分叫做球面三角形,記作球面三角形ABC,在球面三角形ABC中,OA=1,設(shè),二面角B-OA-C、
C-OB-A、A-OC-B的大小分別為α、β、γ,給出下列命題:
①若,則球面三角形ABC的面積為;
②若,則四面體OABC的側(cè)面積為
③圓弧在點(diǎn)A處的切線l1與圓弧在點(diǎn)A處的切線l2的夾角等于a;
④若a=b,則α=β.
其中你認(rèn)為正確的所有命題的序號(hào)是   

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年安徽省宿州市靈璧中學(xué)高考?jí)狠S數(shù)學(xué)試卷1(理科)(解析版) 題型:解答題

如圖,設(shè)A、B、C是球O面上的三點(diǎn),我們把大圓的劣弧在球面上圍成的部分叫做球面三角形,記作球面三角形ABC,在球面三角形ABC中,OA=1,設(shè),二面角B-OA-C、
C-OB-A、A-OC-B的大小分別為α、β、γ,給出下列命題:
①若,則球面三角形ABC的面積為;
②若,則四面體OABC的側(cè)面積為;
③圓弧在點(diǎn)A處的切線l1與圓弧在點(diǎn)A處的切線l2的夾角等于a;
④若a=b,則α=β.
其中你認(rèn)為正確的所有命題的序號(hào)是   

查看答案和解析>>

同步練習(xí)冊(cè)答案