已知函數(shù)
(1)若上存在零點(diǎn),求實(shí)數(shù)的取值范圍;
(2)當(dāng)時(shí),若對(duì)任意的,總存在使成立,求實(shí)數(shù)的取值范圍.

(1);(2)

解析試題分析:(1)上存在零點(diǎn),只需即可;
(2)本問(wèn)是存在性問(wèn)題,只需函數(shù)的值域?yàn)楹瘮?shù)的值域的子集即可.
試題解析:(1)的對(duì)稱(chēng)軸為,所以上單調(diào)遞減,且函數(shù)存在零點(diǎn),所以解得
故實(shí)數(shù)的取值范圍為
(2)由題可知函數(shù)的值域?yàn)楹瘮?shù)的值域的子集
,
以下求函數(shù)的值域:
時(shí),為常函數(shù),不符合題意;
,∴解得;
,∴解得
綜上所述,的取值范圍為
考點(diǎn):1.函數(shù)的零點(diǎn);2.恒成立問(wèn)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

某食品公司為了解某種新品種食品的市場(chǎng)需求,進(jìn)行了20天的測(cè)試,人為地調(diào)控每天產(chǎn)品的單價(jià)P(元/件):前10天每天單價(jià)呈直線下降趨勢(shì)(第10天免費(fèi)贈(zèng)送品嘗),后10天呈直線上升,其中4天的單價(jià)記錄如表:

時(shí)間(將第x天記為x)x
1
10
11
18
單價(jià)(元/件)P
9
0
1
8
而這20天相應(yīng)的銷(xiāo)售量Q(百件/天)與x對(duì)應(yīng)的點(diǎn)(x,Q)在如圖所示的半圓上.

(1)寫(xiě)出每天銷(xiāo)售收入y(元)與時(shí)間x(天)的函數(shù)關(guān)系式y(tǒng)=f(x).
(2)在這20天中哪一天銷(xiāo)售收入最高?為使每天銷(xiāo)售收入最高,按此次測(cè)試結(jié)果應(yīng)將單價(jià)P定為多少元為好?(結(jié)果精確到1元)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

提高過(guò)江大橋的車(chē)輛通行能力可改善整個(gè)城市的交通狀況.在一般情況下,大橋上的車(chē)流速度(單位:千米/小時(shí))是車(chē)流密度(單位:輛/千米)的函數(shù).當(dāng)橋上的車(chē)流密度達(dá)到200輛/千米時(shí),造成堵塞,此時(shí)車(chē)流速度為0;當(dāng)車(chē)流密度不超過(guò)20輛/千米時(shí),車(chē)流速度為60千米/小時(shí).研究表明:當(dāng)時(shí),車(chē)流速度是車(chē)流密度的一次函數(shù).
(1)當(dāng)時(shí),求函數(shù)的表達(dá)式;
(2)當(dāng)車(chē)流密度為多大時(shí),車(chē)流量(單位時(shí)間內(nèi)通過(guò)橋上某觀測(cè)點(diǎn)的車(chē)輛數(shù),單位:輛/小時(shí))可以達(dá)到最大,并求出最大值.(精確到1輛/小時(shí))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

為了保護(hù)環(huán)境,某工廠在國(guó)家的號(hào)召下,把廢棄物回收轉(zhuǎn)化為某種產(chǎn)品,經(jīng)測(cè)算,處理成本(萬(wàn)元)與處理量(噸)之間的函數(shù)關(guān)系可近似的表示為:
,且每處理一噸廢棄物可得價(jià)值為萬(wàn)元的某種產(chǎn)品,同時(shí)獲得國(guó)家補(bǔ)貼萬(wàn)元.
(1)當(dāng)時(shí),判斷該項(xiàng)舉措能否獲利?如果能獲利,求出最大利潤(rùn);
如果不能獲利,請(qǐng)求出國(guó)家最少補(bǔ)貼多少萬(wàn)元,該工廠才不會(huì)虧損?
(2)當(dāng)處理量為多少?lài)崟r(shí),每噸的平均處理成本最少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖所示,為了制作一個(gè)圓柱形燈籠,先要制作4個(gè)全等的矩形骨架,總計(jì)耗用9.6米鐵絲,再用S平方米塑料片制成圓柱的側(cè)面和下底面(不安裝上底面).當(dāng)圓柱底面半徑r取何值時(shí),S取得最大值?并求出該最大值(結(jié)果精確到0.01平方米).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)f(x)=在區(qū)間[-1,1]上是增函數(shù).
(1)求實(shí)數(shù)a的值組成的集合A;
(2)設(shè)x1、x2是關(guān)于x的方程f(x)=的兩個(gè)相異實(shí)根,若對(duì)任意a∈A及t∈[-1,1],不等式m2+tm+1≥|x1-x2|恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

我國(guó)遼東半島普蘭附近的泥炭層中,發(fā)掘出的古蓮子,至今大部分還能發(fā)芽開(kāi)花,這些古蓮子是多少年以前的遺物呢?要測(cè)定古物的年代,可用放射性碳法.在動(dòng)植物的體內(nèi)都含有微量的放射性14C,動(dòng)植物死亡后,停止了新陳代謝,14C不再產(chǎn)生,且原有的14C會(huì)自動(dòng)衰變,經(jīng)過(guò)5570年(叫做14C的半衰期),它的殘余量只有原始量的一半,經(jīng)過(guò)科學(xué)家測(cè)定知道,若14C的原始含量為a,則經(jīng)過(guò)t年后的殘余量a′(與a之間滿足a′=a·e-kt).現(xiàn)測(cè)得出土的古蓮子中14C殘余量占原量的87.9%,試推算古蓮子的生活年代.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

化簡(jiǎn)下列各式(其中各字母均為正數(shù)):
(1)1.5-×0+80.25×+(×)6;
(2)
(3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

某廠生產(chǎn)某種產(chǎn)品的年固定成本為250萬(wàn)元,每生產(chǎn)x千件,需另投入成本為C(x),當(dāng)年產(chǎn)量不足80千件時(shí),C(x)=x2+10x(萬(wàn)元).當(dāng)年產(chǎn)量不小于80千件時(shí),C(x)=51x+-1450(萬(wàn)元).每件商品售價(jià)為0.05萬(wàn)元.通過(guò)市場(chǎng)分析,該廠生產(chǎn)的商品能全部售完.
(1)寫(xiě)出年利潤(rùn)L(x)(萬(wàn)元)關(guān)于年產(chǎn)量x(千件)的函數(shù)解析式.
(2)年產(chǎn)量為多少千件時(shí),該廠在這一商品的生產(chǎn)中所獲利潤(rùn)最大?

查看答案和解析>>

同步練習(xí)冊(cè)答案