某食品公司為了解某種新品種食品的市場需求,進(jìn)行了20天的測試,人為地調(diào)控每天產(chǎn)品的單價P(元/件):前10天每天單價呈直線下降趨勢(第10天免費(fèi)贈送品嘗),后10天呈直線上升,其中4天的單價記錄如表:
時間(將第x天記為x)x | 1 | 10 | 11 | 18 |
單價(元/件)P | 9 | 0 | 1 | 8 |
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
某廠生產(chǎn)A產(chǎn)品的年固定成本為250萬元,若A產(chǎn)品的年產(chǎn)量為萬件,則需另投入成本(萬元)。已知A產(chǎn)品年產(chǎn)量不超過80萬件時,;A產(chǎn)品年產(chǎn)量大于80萬件時,。因設(shè)備限制,A產(chǎn)品年產(chǎn)量不超過200萬件。現(xiàn)已知A產(chǎn)品的售價為50元/件,且年內(nèi)生產(chǎn)的A產(chǎn)品能全部銷售完。設(shè)該廠生產(chǎn)A產(chǎn)品的年利潤為L(萬元)。
(1)寫出L關(guān)于的函數(shù)解析式;
(2)當(dāng)年產(chǎn)量為多少時,該廠生產(chǎn)A產(chǎn)品所獲的利潤最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分14分)本題共有2個小題,第1小題滿分6分,第2個小題滿分8分。
已知.
(1)當(dāng),時,若不等式恒成立,求的范圍;
(2)試證函數(shù)在內(nèi)存在零點.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),
(1)若函數(shù)在上是減函數(shù),求實數(shù)的取值范圍;
(2)是否存在實數(shù),當(dāng)(是自然常數(shù))時,函數(shù)的最小值是3,若存在,求出的值;若不存在,說明理由;
(3)當(dāng)時,證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù)f(x)=ax2+(b-2)x+3(a≠0),若不等式f(x)>0的解集為(-1,3).
(1)求a,b的值;
(2)若函數(shù)f(x)在x∈[m,1]上的最小值為1,求實數(shù)m的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)二次函數(shù)滿足條件:①;②函數(shù)的圖像與直線相切.
(1)求函數(shù)的解析式;
(2)若不等式在時恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù).
(1)若在上存在零點,求實數(shù)的取值范圍;
(2)當(dāng)時,若對任意的,總存在使成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
甲同學(xué)家到乙同學(xué)家的途中有一公園,甲從家到公園的距離與乙從家到公園的距離都是2 km,甲10時出發(fā)前往乙家.如圖所示,表示甲從家出發(fā)到達(dá)乙家為止經(jīng)過的路程y(km)與時間x(分)的關(guān)系.試寫出y=f(x)的函數(shù)解析式.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com