給定集合An={1,2,3,…,n},映射f:An→An滿(mǎn)足:
①當(dāng)i,j∈An,i≠j時(shí),f(i)≠f(j);
②任取m∈An,若m≥2,則有m∈{f(1),f(2),..,f(m)}.
則稱(chēng)映射f:An→An是一個(gè)“優(yōu)映射”.例如:用表1表示的映射f:A3→A3是一個(gè)“優(yōu)映射”.
表1                               
i123
f(i)231
表2
i1234
f(i)3
(1)已知表2表示的映射f:A4→A4是一個(gè)優(yōu)映射,請(qǐng)把表2補(bǔ)充完整(只需填出一個(gè)滿(mǎn)足條件的映射);
(2)若映射f:A10→A10是“優(yōu)映射”,且方程f(i)=i的解恰有6個(gè),則這樣的“優(yōu)映射”的個(gè)數(shù)是   
【答案】分析:(1)根據(jù)“優(yōu)映射”的定義可得,
(2)根據(jù)“優(yōu)映射”的定義,可知f(1)≠1,m≥2,根據(jù)m∈{f(1),f(2),..,f(m)},且方程f(i)=i的解恰有6個(gè),因此從2,3,…10這9個(gè)數(shù)中選取6個(gè)滿(mǎn)足方程f(i)=i即可求得結(jié)果.
解答:解;(1);
(2)根據(jù)優(yōu)映射的定義可知:f(1)≠1,
∵m≥2,則有m∈{f(1),f(2),..,f(m)},且映射f:A10→A10是“優(yōu)映射”,且方程f(i)=i的解恰有6個(gè),
故有C96=84
故答案為:,84
點(diǎn)評(píng):本題考查映射的定義,“優(yōu)映射”的定義,判斷f(1)≠1,是解題的關(guān)鍵,是一道不錯(cuò)的創(chuàng)新題,屬中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

24、給定集合An={1,2,3,…,n},映射f:An→An,同時(shí)滿(mǎn)足:
①當(dāng)i,j∈An,i≠j時(shí),f(i)≠f(j);
②任取m∈An,若m≥2,則有m∈{f(1),f(2),…,f(m)}.
則稱(chēng)映射f:An→An是一個(gè)“優(yōu)映射”.
例如:用表1表示的映射f:A3→A3是一個(gè)“優(yōu)映射”.
表1   表2
1 2 3   1 2 3 4 5
2 3 1            
已知表2表示的映射f:A5-A5是一個(gè)“優(yōu)映射”,且方程f(i)=i的解恰有3個(gè),則這樣的“優(yōu)映射”的個(gè)數(shù)是
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

14、給定集合An={1,2,3,…,n},n∈N*.若f是An→An的映射,且滿(mǎn)足:
(1)任取i,j∈An,若i≠j,則f(i)≠f(j);
(2)任取m∈An,若m≥2,則有m∈{f(1),f(2),…,f(m)}.
則稱(chēng)映射f為An→An的一個(gè)“優(yōu)映射”.
例如:用表1表示的映射f:A3→A3是一個(gè)“優(yōu)映射”.
表1
i 1 2 3
f(i) 2 3 1
表2
i 1 2 3 4
f(i) 3
(1)已知f:A4→A4是一個(gè)“優(yōu)映射”,請(qǐng)把表2補(bǔ)充完整(只需填出一個(gè)滿(mǎn)足條件的映射);
(2)若f:A2010→A2010是“優(yōu)映射”,且f(1004)=1,則f(1000)+f(1007)的最大值為
2011

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給定集合An={1,2,3…,n},n∈N*.若f是An→An的映射,且滿(mǎn)足:
(1)任取i,j∈An,若i≠j,則f(i)≠f(j);
(2)任取m∈An,若m≥2,則有m∈{f(1),f(2,…,f(m))}.則稱(chēng)映射f為An→An的一個(gè)“優(yōu)映射”.例如:用表表示的映射f:A3→A3是一個(gè)“優(yōu)映射”.
i 1 2 3
f(i) 2 3 1
3C:映射
若f:A2010→A2010是“優(yōu)映射”,且f(1005)=1,則f(1001)+f(1009)的最大值為
2014
2014

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給定集合An={1,2,3,…,n},映射f:An→An滿(mǎn)足:
①當(dāng)i,j∈An,i≠j時(shí),f(i)≠f(j);
②任取m∈An,若m≥2,則有m∈{f(1),f(2),..,f(m)}.
則稱(chēng)映射f:An→An是一個(gè)“優(yōu)映射”.例如:用表1表示的映射f:A3→A3是一個(gè)“優(yōu)映射”.
表1                               
i 1 2 3
f(i) 2 3 1
表2
i 1 2 3 4
f(i) 3
(1)已知表2表示的映射f:A4→A4是一個(gè)優(yōu)映射,請(qǐng)把表2補(bǔ)充完整(只需填出一個(gè)滿(mǎn)足條件的映射);
(2)若映射f:A10→A10是“優(yōu)映射”,且方程f(i)=i的解恰有6個(gè),則這樣的“優(yōu)映射”的個(gè)數(shù)是
84
84

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年陜西省西安市高三下學(xué)期第一次模擬考試?yán)砜茢?shù)學(xué) 題型:填空題

給定集合An ={1,2,3,…,n}(),映射滿(mǎn)足:①當(dāng)時(shí),;②任取,若,則有.則稱(chēng)映射是一個(gè)“優(yōu)映射”.例如:用表1表示的映射是一個(gè)“優(yōu)映射”.

 

表1                          表2

i

1

2

3

 f(i)

2

3

1

i

1

2

3

4

f(i)

 

3

 

 

   

(1)已知表2表示的映射是一個(gè)“優(yōu)映射”,請(qǐng)把表2補(bǔ)充完整.

    (2)若映射是“優(yōu)映射”,且方程的解恰有6個(gè),則這樣的“優(yōu)映射”的個(gè)數(shù)是        

 

查看答案和解析>>

同步練習(xí)冊(cè)答案