已知(1-x-x8)=a0+a1x+a2x2+…+a21x22,則a1+a2+…+an的值為( 。
A、-1B、1C、0D、-2
考點:二項式系數(shù)的性質
專題:二項式定理
分析:由題意可得可得a0=1,在所給的等式中,令x=1,可得1+a1+a2+…+an=1-1-1,由此求得a1+a2+…+an的值.
解答: 解:由(1-x-x8)=a0+a1x+a2x2+…+a21x22,可得a0=1,
令x=1,可得1+a1+a2+…+an=1-1-1,
故a1+a2+…+an=-2,
故選:D.
點評:本題主要考查二項式定理的應用,注意根據(jù)題意,分析所給代數(shù)式的特點,通過給二項式的x賦值,求展開式的系數(shù)和,可以簡便的求出答案,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

如果橢圓kx2+y2=1的一個焦點坐標是(2,0),那么實數(shù)k的值是( 。
A、8
B、12
C、
1
2
D、
1
5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設全集U={1,2,3,4,5,6,7},A={2,4,6},則∁UA=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知不等式
x-2
ax+b
>0的解集為(-1,2),m是二項式(ax-
b
x2
6的展開式的常數(shù)項,那么
ma
a7+2b7
=( 。
A、-15B、-5C、-5aD、5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知A(2,1,0),B(0,3,1),C(2,2,3),則
AC
AB
上的正投影的數(shù)量為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x|x-4|,x∈[0,m],其中m∈R且m>0.如果函數(shù)f(x)的值域為[0,λm2],試求實數(shù)λ的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

點(x,y)滿足的不等式組
x≥0
y≥x
kx-y+1≥0
(k是常數(shù))所表示的平面區(qū)域的邊界是一個直角三角形,則x-3y的最小值為(  )
A、-3或0B、-或0
C、-3D、-1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知圓M:(x-4)2+(y+1)2=1,圓N與圓M關于直線y=2x-4對稱,則圓N的方程為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若非空集合A={x|x2+ax+b=0},集合B={1,2},且A⊆B,求實數(shù)a.b的取值.

查看答案和解析>>

同步練習冊答案