【題目】(2017·石家莊一模)祖暅是南北朝時期的偉大數(shù)學家,5世紀末提出體積計算原理,即祖暅原理:“冪勢既同,則積不容異”.意思是:夾在兩個平行平面之間的兩個幾何體,被平行于這兩個平面的任何一個平面所截,如果截面面積都相等,那么這兩個幾何體的體積一定相等.現(xiàn)有以下四個幾何體:圖①是從圓柱中挖去一個圓錐所得的幾何體,圖②、圖③、圖④分別是圓錐、圓臺和半球,則滿足祖暅原理的兩個幾何體為(  )

A. ①② B. ①③

C. ②④ D. ①④

【答案】D

【解析】設截面與底面的距離為,則①中截面內(nèi)圓半徑為,則截面圓環(huán)的面積為;②中截面圓的半徑為,則截面圓的面積為;③中截面圓的半徑為,則截面圓的面積為;②中截面圓的半徑為,則截面圓的面積為,所以①④中截面的面積相等,故選D.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知等差數(shù)列滿足,數(shù)列的前項和為,且滿足.

(1)求數(shù)列的通項公式;

(2)數(shù)列滿足,求數(shù)列的前項和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)的導函數(shù)f′(x),且對任意x>0,都有f′(x)>.

(1)判斷函數(shù)F(x)=在(0,+∞)上的單調性;

(2)設x1,x2∈(0,+∞),證明:f(x1)+f(x2)<f(x1x2);

(3)請將(2)中結論推廣到一般形式,并證明你所推廣的結論.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=ax2axxln x,且f(x)≥0.

(1)a

(2)證明:f(x)存在唯一的極大值點x0,且e2<f(x0)<22

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】是由個實數(shù)組成的列的數(shù)表,滿足:每個數(shù)的絕對值不大于,且所有數(shù)的和為零,記為所有這樣的數(shù)表組成的集合,對于,記的第行各數(shù)之和( ),的第列各數(shù)之和(),記, , , , , , 中的最小值.

)對如下數(shù)表,求的值.

)設數(shù)表形如:

的最大值.

)給定正整數(shù),對于所有的,求的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖是一幾何體的平面展開圖,其中ABCD為正方形,E,F分別為PA,PD的中點,

在此幾何體中,給出下面四個結論:

直線BE與直線CF異面; 直線BE與直線AF異面;

直線EF平面PBC平面BCE平面PAD.

其中正確的有(  )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(2017·鄭州第二次質量預測)如圖,高為1的等腰梯形ABCD中,AMCDAB=1.現(xiàn)將△AMD沿MD折起,使平面AMD⊥平面MBCD,連接ABAC.

(1)在AB邊上是否存在點P,使AD∥平面MPC?

(2)當點PAB邊的中點時,求點B到平面MPC的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐PABCD中,底面ABCD是菱形,∠ABC60°,為正三角形,且側面PAB底面ABCD. E,M分別為線段ABPD的中點.

(I)求證:PE⊥平面ABCD;

II求證:PB//平面ACM;

(III)在棱CD上是否存在點G,使平面GAM⊥平面ABCD,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-5:不等式選講

設函數(shù)f(x)=e2xaln x.

(1)討論f(x)的導函數(shù)f′(x)零點的個數(shù);

(2)證明:當a>0時,f(x)≥2aaln.

查看答案和解析>>

同步練習冊答案