已知分別是雙曲線的兩個焦點(diǎn),是以(為坐標(biāo)原點(diǎn))為圓心,為半徑的圓與該雙曲線左支的兩個交點(diǎn),且是等邊三角形,則雙曲線的離心率為(     )
A.B.C.D.
D

試題分析:如圖,

設(shè)F1F2=2c,∵△F2AB是等邊三角形,∴∠AF2F1=30°,∴AF1=c,AF2=C,∴a=,e=,故選D
點(diǎn)評:求解圓錐曲線的離心率的關(guān)鍵是利用代數(shù)運(yùn)算或幾何特征找的關(guān)于a、b、c的關(guān)系式。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知雙曲線的兩條漸近線的夾角為,則雙曲線的離心率為(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

如右圖,拋物線C:(p>0)的焦點(diǎn)為F,A為C上的點(diǎn),以F為圓心,為半徑的圓與線段AF的交點(diǎn)為B,∠AFx=60°,A在y軸上的射影為N,則∠=      

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知F1、F2為雙曲線C:x²-y²=2的左、右焦點(diǎn),點(diǎn)P在C上,|PF1|=2|PF2|,則cos∠F1PF2=(     )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

和圓的極坐標(biāo)方程分別為,則經(jīng)過兩圓圓心的直線的直角坐標(biāo)方程為_________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)圓的極坐標(biāo)方程為,以極點(diǎn)為直角坐標(biāo)系的原點(diǎn),極軸為軸正半軸,兩坐標(biāo)系長度單位一致,建立平面直角坐標(biāo)系.過圓上的一點(diǎn)作平行于軸的直線,設(shè)軸交于點(diǎn),向量
(Ⅰ)求動點(diǎn)的軌跡方程;
(Ⅱ)設(shè)點(diǎn) ,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

若直線的極坐標(biāo)方程為,曲線:上的點(diǎn)到直線的距離為,則的最大值為_________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

直線與拋物線所圍成的圖形面積是(     )
A.20B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

焦點(diǎn)在軸上,漸近線方程為的雙曲線的離心率為_______.

查看答案和解析>>

同步練習(xí)冊答案