已知數(shù)列{an}是各項均不為0的等差數(shù)列,Sn為其前n項和,且滿足an2=S2n-1,令,數(shù)列{bn}的前n項和為Tn
(1)求數(shù)列{an}的通項公式及數(shù)列{bn}的前n項和為Tn;
(2)是否存在正整數(shù)m,n(1<m<n),使得T1,Tm,Tn成等比數(shù)列?若存在,求出所有的m,n的值;若不存在,請說明理由.
【答案】分析:(1)把等差數(shù)列的求和公式代入an2=S2n-1整理后可求得an,代入利用裂項法求得Tn
(2)根據(jù)(1)中求得Tn分別表示出T1,Tm,Tn根據(jù)等比中項的性質(zhì)建立等式,化簡整理即可求得m的范圍,進而根據(jù)m和n均為正整數(shù)求得m,進而n
解答:解:(1)因為{an}是等差數(shù)列,
,
又因為an≠0,所以an=2n-1,

所以
(2)由(1)知,
所以,
若T1,Tm,Tn成等比數(shù)列,則

,
可得,
所以-2m2+4m+1>0,
從而:,又m∈N,且m>1,
所以m=2,此時n=12.
故可知:當且僅當m=2,n=12使數(shù)列{Tn}中的T1,Tm,Tn成等比數(shù)列.
點評:本題主要考查了等差數(shù)列和等比數(shù)列的性質(zhì).考查了學生綜合分析問題和實際運算能力.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)若一個數(shù)列各項取倒數(shù)后按原來的順序構(gòu)成等差數(shù)列,則稱這個數(shù)列為調(diào)和數(shù)列.已知數(shù)列{an}是調(diào)和數(shù)列,對于各項都是正數(shù)的數(shù)列{xn},滿足xnan=xn+1an+1=xn+2an+2(n∈N*).
(Ⅰ)證明數(shù)列{xn}是等比數(shù)列;
(Ⅱ)把數(shù)列{xn}中所有項按如圖所示的規(guī)律排成一個三角形數(shù)表,當x3=8,x7=128時,求第m行各數(shù)的和;
(Ⅲ)對于(Ⅱ)中的數(shù)列{xn},證明:
n
2
-
1
3
x1-1
x2-1
+
x2-1
x3-1
+…+
xn-1
xn+1-1
n
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2006•南匯區(qū)二模)已知數(shù)列{an}中,若2an=an-1+an+1(n∈N*,n≥2),則下列各不等式中一定成立的是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

若一個數(shù)列各項取倒數(shù)后按原來的順序構(gòu)成等差數(shù)列,則稱這個數(shù)列為調(diào)和數(shù)列.已知數(shù)列{an}是調(diào)和數(shù)列,對于各項都是正數(shù)的數(shù)列{xn},滿足數(shù)學公式(n∈N*).
(Ⅰ)證明數(shù)列{xn}是等比數(shù)列;
(Ⅱ)把數(shù)列{xn}中所有項按如圖所示的規(guī)律排成一個三角形數(shù)表,當x3=8,x7=128時,求第m行各數(shù)的和;
(Ⅲ)對于(Ⅱ)中的數(shù)列{xn},證明:數(shù)學公式

查看答案和解析>>

科目:高中數(shù)學 來源:2010年北京市朝陽區(qū)高考數(shù)學一模試卷(理科)(解析版) 題型:解答題

若一個數(shù)列各項取倒數(shù)后按原來的順序構(gòu)成等差數(shù)列,則稱這個數(shù)列為調(diào)和數(shù)列.已知數(shù)列{an}是調(diào)和數(shù)列,對于各項都是正數(shù)的數(shù)列{xn},滿足(n∈N*).
(Ⅰ)證明數(shù)列{xn}是等比數(shù)列;
(Ⅱ)把數(shù)列{xn}中所有項按如圖所示的規(guī)律排成一個三角形數(shù)表,當x3=8,x7=128時,求第m行各數(shù)的和;
(Ⅲ)對于(Ⅱ)中的數(shù)列{xn},證明:

查看答案和解析>>

科目:高中數(shù)學 來源:2010年北京市朝陽區(qū)高考數(shù)學一模試卷(文科)(解析版) 題型:解答題

若一個數(shù)列各項取倒數(shù)后按原來的順序構(gòu)成等差數(shù)列,則稱這個數(shù)列為調(diào)和數(shù)列.已知數(shù)列{an}是調(diào)和數(shù)列,對于各項都是正數(shù)的數(shù)列{xn},滿足(n∈N*).
(Ⅰ)證明數(shù)列{xn}是等比數(shù)列;
(Ⅱ)把數(shù)列{xn}中所有項按如圖所示的規(guī)律排成一個三角形數(shù)表,當x3=8,x7=128時,求第m行各數(shù)的和;
(Ⅲ)對于(Ⅱ)中的數(shù)列{xn},證明:

查看答案和解析>>

同步練習冊答案