直線y=
3
x-m與圓x2+y2=9交于不同的兩點M,N,|
MN
|
6
|
OM
+
ON
|,其中O是坐標(biāo)原點,則實數(shù)m的取值范圍是
 
考點:直線與圓相交的性質(zhì)
專題:直線與圓
分析:根據(jù)向量的基本運算和關(guān)系進轉(zhuǎn)化為圓心到直線的距離即可.
解答: 解:設(shè)MN的中點為A,則OA⊥MN,
則|
OM
+
ON
|=2|
OA
|,
若|
MN
|
6
|
OM
+
ON
|=2
6
|OA|,
即2|MA|≥2
6
|OA|,
∴|MA|≥
6
|OA|,
9-|OA|2
6
|OA|,
解得|0A|≤
3
7

即圓心到直線的距離d=|0A|=
|m|
1+(
3
)2
=
|m|
2
|≤
3
7
,
則|m|
6
7
=
6
7
7
,
解得-
6
7
7
≤m≤
6
7
7

故答案為:-
6
7
7
≤m≤
6
7
7
點評:本題考查了直線與圓的位置關(guān)系以及點到直線的距離問題,根據(jù)向量的基本運算和關(guān)系進行轉(zhuǎn)化是解決本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,邊長為2的正方形ACDE所在平面與平面ABC垂直,AD與CE的交點為M,AC⊥BC,且AC=BC,
(1)求證:AM⊥平面EBC;
(2)求直線EC與平面ABE所成線面角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

為普及高中生安全逃生知識,某學(xué)校高一年級舉辦了高中生安全知識競賽,從參加競賽同學(xué)的成績中抽取了一個樣本,將他們的競賽得分(得分均為整數(shù),滿分為100分)進行統(tǒng)計,制成如下頻率分布表,
分?jǐn)?shù)段(分)頻數(shù)(人)頻率
[60,70)9x
[70,80)y0.4
[80,90)160.32
[90,100]zs
合計p1
(Ⅰ) 求出表中的x、y、z、s、p的值;
(Ⅱ) 樣本數(shù)據(jù)的中位數(shù)是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖(1),矩形ABCD中,M、N分別為邊AD、BC的中點,E、F分別為邊AB、CD上的定點且滿足EB=FC,現(xiàn)沿MN,EN,F(xiàn)N折疊使點B、C重合且與E、F共線,如圖(2).若此時二面角A-MN-D的大小為60°,則折疊后EN與平面MNFD所成角的正弦值是( 。
A、
10
2
B、
10
5
C、
15
5
D、
15
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知tanα=2,且sinα<0,則cosα的值等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某工廠組織工人參加上崗測試,每位測試者最多有三次機會,一旦某次測試通過,便可上崗工作,不再參加以后的測試;否 則就一直測試到第三次為止.設(shè)每位工人每次測試通過的概率依次為
1
2
,
1
2
,
1
5

(1)若有3位工人參加這次測試,求至少有一人不能上崗的概率;
(2)若有4位工人參加這次測試,求至多有2人通過測試的概率.(結(jié)果均用分?jǐn)?shù)表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l1:A1x+B1y+C1=0與l2:A2x+B2y+C2=0相交,證明方程A1x+B1y+C1+λ(A2x+B2y+C2)=0(λ∈R)表示過l1與l2交點的直線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知命題P:函數(shù)f(x)=x2-ax+3在(-∞,
1
2
]上是減函數(shù),命題q:不等式(a-2)x2-2(a-2)-4<0對一切x∈R都成立.若“p或q”為真命題,且“p且q”為假命題,求實數(shù)a的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若“x∈A“是“x∈B“的充分條件,但不是必要條件,則A與B的關(guān)系是
 

查看答案和解析>>

同步練習(xí)冊答案