17.已知實數(shù)x、y滿足約束條件$\left\{\begin{array}{l}{x-y≤0}\\{3x-y-2≥0}\\{x+y-6≥0}\end{array}\right.$,則目標(biāo)函數(shù)z=2x+y( 。
A.有最小值3,最大值9B.有最小值9,無最大值
C.有最小值8,無最大值D.有最小值3,最大值8

分析 作出不等式對應(yīng)的平面區(qū)域,利用線性規(guī)劃的知識,通過平移即可求z的最值.

解答 解:作出不等式對應(yīng)的平面區(qū)域(陰影部分),
由z=2x+y,得y=-2x+z,
平移直線y=-2x+z,由圖象可知當(dāng)直線y=-2x+z經(jīng)過點(diǎn)A時,直線y=-2x+z的截距最小,此時z最小.無最大值.
由$\left\{\begin{array}{l}{3x-y-2=0}\\{x+y-6=0}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=2}\\{y=4}\end{array}\right.$,
即A(2,4).
此時z的最小值為z=2×2+4=8,
故選:C.

點(diǎn)評 本題主要考查線性規(guī)劃的應(yīng)用,利用目標(biāo)函數(shù)的幾何意義,結(jié)合數(shù)形結(jié)合的數(shù)學(xué)思想是解決此類問題的基本方法.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.隨機(jī)變量X的分布列如表,且$EX=\frac{4}{3}$,則a-b=$\frac{1}{3}$.
 X 1 2
 P a b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.復(fù)數(shù)z滿足z(1-i)=2(i是虛數(shù)單位),則z=( 。
A.1+iB.-1+iC.-1-iD.1-i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.設(shè)函數(shù)f(x)=xlnx,g(x)=-a+xlnb(a>0,b>0).
(I)設(shè)h(x)=f(x)+g(x),求h(x)的單調(diào)區(qū)間;
(II)若存在x0,使x0∈[$\frac{a+b}{4}$,$\frac{3a+b}{5}$]且f(x0)≤g(x0)成立,求$\frac{a}$的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.小朋友甲、乙、丙、丁一塊玩撲克牌數(shù)字計算,把全部紅桃1至紅桃9等9張撲克牌洗牌后疊起來,每人從中抽取2張,然后報出兩數(shù)的關(guān)系,甲說自己手里的兩數(shù)相加為10;乙說自己手里的兩數(shù)相減為1;丙說自己手里的兩數(shù)乘積為24;丁說自己手里的兩數(shù)之商為3.由此猜出剩下沒有人拿的數(shù)字是7.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.如圖,已知正方體ABCD-A1B1C1D1的棱長為3,M,N分別是棱AA1,AB上的點(diǎn),且AM=AN=1.
(1)證明:M,N,C,D1四點(diǎn)共面;
(2)平面MNCD1將此正方體分為兩部分,求這兩部分的體積
之比.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知函數(shù)f(x)=$\frac{2}{x+1}$,點(diǎn)O為坐標(biāo)原點(diǎn),點(diǎn)An(n,f(n))(n∈N*),向量$\overrightarrow{i}$=(0,1),θn是向量$\overrightarrow{O{A}_{n}}$與i的夾角,則$\frac{cos{θ}_{1}}{sin{θ}_{1}}$+$\frac{cos{θ}_{2}}{sin{θ}_{2}}$+$\frac{cos{θ}_{3}}{sin{θ}_{3}}$+…+$\frac{cos{θ}_{2015}}{sin{θ}_{2015}}$的值為$\frac{2015}{1008}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.如圖,正方形ABCD的邊長為2,O為AD的中點(diǎn),射線OP從OA出發(fā),繞著點(diǎn)O順時針方向旋轉(zhuǎn)至OD,在旋轉(zhuǎn)的過程中,記∠AOP為x(x∈[0,π]),OP所經(jīng)過正方形ABCD內(nèi)的區(qū)域(陰影部分)的面積S=f(x),那么對于函數(shù)f(x)有以下三個結(jié)論:
①f($\frac{π}{3}$)=$\frac{\sqrt{3}}{2}$;
②任意x∈[0,$\frac{π}{2}$],都有f($\frac{π}{2}$-x)+f($\frac{π}{2}$+x)=4;
③任意x1,x2∈($\frac{π}{2}$,π),且x1≠x2,都有$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$<0.
其中所有正確結(jié)論的序號是①②.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.若α∈(0,$\frac{π}{2}$),且cos2α+cos($\frac{π}{2}$+2α)=$\frac{3}{10}$,則tanα( 。
A.$\frac{1}{2}$B.$\frac{1}{3}$C.$\frac{1}{4}$D.$\frac{1}{5}$

查看答案和解析>>

同步練習(xí)冊答案