【題目】有下面四個命題,其中正確命題的序號是(

直線、不相交直線、為異面直線的充分而不必要條件;②直線平面內(nèi)所有直線的充要條件是平面;③直線直線的充要條件是平行于所在的平面;④直線平面的必要而不充分條件是直線平行于內(nèi)的一條直線.

A.①③B.②③C.②④D.③④

【答案】C

【解析】

①“直線、為異面直線” “直線、不相交”,反之不成立,即可判斷出關(guān)系;

②根據(jù)線面垂直的判定與性質(zhì)定理即可判斷出正誤;

③“直線直線”與“平行于所在的平面”相互不能推出,即可判斷出正誤;

④“直線平面 “直線平行于內(nèi)的一條直線”,反之不成立;即可判斷出關(guān)系.

解:①“直線、為異面直線” “直線、不相交”,

“直線、不相交” 直線、的位置關(guān)系有平行或異面,故由“直線、不相交”得不到“直線、為異面直線”

因此“直線不相交”是“直線、為異面直線”的必要而不充分條件,因此不正確;

②“直線平面內(nèi)所有直線”的充要條件是“平面”,正確;

③由“直線直線”則直線與直線所在的平面的位置關(guān)系有平行、在平面內(nèi);

由“平行于所在的平面”則直線與直線可能平行,異面;

故“直線直線”與“平行于所在的平面”相互不能推出,

因此不正確;

④由“直線平面 可得直線平行平面內(nèi)的無數(shù)條直線;

由“直線平行于內(nèi)的一條直線”則直線可能與平面平行也可能在平面內(nèi);

故“直線平面 “直線平行于內(nèi)的一條直線”,反之不成立,

“直線平面”的必要而不充分條件是“直線平行于內(nèi)的一條直線.”

綜上只有②④正確.

故選:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】張軍自主創(chuàng)業(yè),在網(wǎng)上經(jīng)營一家干果店,銷售的干果中有松子、開心果、腰果、核桃,價格依次為120/千克、80/千克、70/千克、40元千克,為增加銷量,張軍對這四種干果進(jìn)行促銷:一次購買干果的總價達(dá)到150元,顧客就少付x(2xZ).每筆訂單顧客網(wǎng)上支付成功后,張軍會得到支付款的80%.

①若顧客一次購買松子和腰果各1千克,需要支付180元,則x=________;

②在促銷活動中,為保證張軍每筆訂單得到的金額均不低于促銷前總價的七折,則x的最大值為_____.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】清華大學(xué)自主招生考試題中要求考生從AB,C三道題中任選一題作答,考試結(jié)束后,統(tǒng)計數(shù)據(jù)顯示共有600名學(xué)生參加測試,選擇A,B,C三題答卷數(shù)如下表:


A

B

C

答卷數(shù)

180

300

120

)負(fù)責(zé)招生的教授為了解參加測試的學(xué)生答卷情況,現(xiàn)用分層抽樣的方法從600份答案中抽出若干份答卷,其中從選擇A題作答的答卷中抽出了3份,則應(yīng)分別從選擇B,C題作答的答卷中各抽出多少份?

)測試后的統(tǒng)計數(shù)據(jù)顯示,A題的答卷得優(yōu)的有60份,若以頻率作為概率,在()問中被抽出的選擇A題作答的答卷中,記其中得優(yōu)的份數(shù)為,求的分布列及其數(shù)學(xué)期望

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左、右焦點分別為,離心率為,直線與橢圓C交于A,B兩點,且

(1)求橢圓C的方程.

(2)不經(jīng)過點的直線被圓截得的弦長與橢圓C的長軸長相等,且直線與橢圓C交于D,E兩點,試判斷的周長是否為定值?若是,求出定值;若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)求的定義域;

2)求函數(shù)在區(qū)間內(nèi)的零點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在如圖所示的幾何體中,四邊形是菱形,四邊形是矩形,平面平面,,的中點,為線段上的一點.

1)求證:

2)若二面角的大小為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)為常數(shù))在內(nèi)有兩個極值點,

(1)求實數(shù)的取值范圍;

(2)求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1)若曲線處的切線的方程為,求實數(shù)的值;

2)設(shè),若對任意兩個不等的正數(shù),都有恒成立,求實數(shù)的取值范圍;

3)若在上存在一點,使得成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)都是定義在上的奇函數(shù), 當(dāng)時,,則(4)的值為____

查看答案和解析>>

同步練習(xí)冊答案