分析 由題意曲線C是平面內(nèi)到直線l1:x=-1和直線l2:y=1的距離之積等于常數(shù)k2(k>0)的點的軌跡.利用直接法,設(shè)動點坐標為(x,y),及可得到動點的軌跡方程,然后由方程特點即可加以判斷.
解答 解:由題意設(shè)動點坐標為(x,y),則利用題意及點到直線間的距離公式的得:|x+1||y-1|=k2,
對于①,將(-1,1)代入驗證,此方程不過此點,所以①錯;
對于②,把方程中的x被-2-x代換,y被2-y 代換,方程不變,故此曲線關(guān)于(-1,1)對稱.所以②正確;
對于③,由題意知點P在曲線C上,點A,B分別在直線l1,l2上,則|PA|≥|x+1|,|PB|≥|y-1|
∴|PA|+|PB|≥2$\sqrt{\left|PA\right|\left|PB\right|}$=2k,所以③正確;
對于④,由題意知點P在曲線C上,根據(jù)對稱性,
則四邊形P0P1P2P3的面積=2|x+1|×2|y-1|=4|x+1||y-1|=4k2.所以④正確.
故答案為:②③④.
點評 此題重點考查了利用直接法求出動點的軌跡方程,并化簡,利用方程判斷曲線的對稱性,屬于基礎(chǔ)題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | x-y+2=0 | B. | x+y-2=0 | C. | x-y-2=0 | D. | x+y+2=0 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{3}$ | B. | $\frac{1}{2}$ | C. | $\frac{\sqrt{3}}{3}$ | D. | $\frac{\sqrt{2}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 4:1:1 | B. | 2:1:1 | C. | 3:1:1 | D. | $\sqrt{3}$:1:1 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com