函數(shù)y=sin(2x+
π
3
)的圖象可由函數(shù)y=sinx的圖象怎樣變換而來(lái)?(  )
A、先向左平移
π
3
,再縱坐標(biāo)不變,橫坐標(biāo)伸長(zhǎng)為原來(lái)的2倍
B、先向左平移
π
3
,再縱坐標(biāo)不變,橫坐標(biāo)縮短為原來(lái)的
1
2
C、先向右平移
π
6
,再縱坐標(biāo)不變,橫坐標(biāo)伸長(zhǎng)為原來(lái)的2倍
D、先向左平移
π
6
,再縱坐標(biāo)不變,橫坐標(biāo)縮短為原來(lái)的
1
2
考點(diǎn):函數(shù)y=Asin(ωx+φ)的圖象變換
專題:三角函數(shù)的圖像與性質(zhì)
分析:根據(jù)函數(shù)解析式之間的關(guān)系進(jìn)行求解即可.
解答: 解:將函數(shù)y=sinx的圖象先向左平移
π
3
,再縱坐標(biāo)不變,橫坐標(biāo)縮短為原來(lái)的
1
2
倍即可得到y(tǒng)=sin(2x+
π
3
)的圖象,
故選:B
點(diǎn)評(píng):本題主要考查三角函數(shù)的圖象變換,比較基礎(chǔ).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=2sin(ωx+ϕ)(ω>0,-
π
2
<ϕ<
π
2
)的部分圖象如圖所示,則ω,φ的值分別是( 。
A、2,-
π
3
B、2,-
π
6
C、
1
2
π
3
D、
1
2
,
π
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知等差數(shù)列{an},公差d>0,a1+a2+a3=6,且a3-a1,2a2,a8成等比數(shù)列.
(Ⅰ)求{an}的通項(xiàng)公式;
(Ⅱ)設(shè)bn=
an
2n
,求證:b1+b2+b3+…+bn<2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求數(shù)列1,2+3,4+5+6,7+8+9+10的通項(xiàng)公式及前n項(xiàng)之和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列四個(gè)函數(shù)中,在區(qū)間(0,1)上是減函數(shù)的是( 。
A、y=
1
x
B、y=log2x
C、y=2x
D、y=x
1
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=2sin(
π
6
-2x)(x∈[0,π])的遞增區(qū)間是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知m,n是滿足m+n=1,且使
1
m
+
4
n
取得最小值的正實(shí)數(shù).若曲線y=ax-m+n(a>0且a≠1)恒過(guò)定點(diǎn)M,則點(diǎn)M的坐標(biāo)為(  )
A、(
1
3
5
3
B、(
4
5
,
6
5
C、(
1
5
,
9
5
D、(
1
3
,
2
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)條件p:x2-6x+8≤0,條件q:(x-a)(x-a-1)≤0,若p是q的必要不充分條件,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=
|cosx|
cosx
+
tanx
|tanx|
的值域?yàn)椋ā 。?/div>
A、{-2,2}
B、{-2,0,2}
C、[-2,2]
D、{0,1,2}

查看答案和解析>>

同步練習(xí)冊(cè)答案