函數(shù)f(x)=2sin(ωx+ϕ)(ω>0,-
π
2
<ϕ<
π
2
)的部分圖象如圖所示,則ω,φ的值分別是( 。
A、2,-
π
3
B、2,-
π
6
C、
1
2
,
π
3
D、
1
2
,
π
6
考點(diǎn):由y=Asin(ωx+φ)的部分圖象確定其解析式
專題:三角函數(shù)的圖像與性質(zhì)
分析:利用正弦函數(shù)的周期性可求得
T
2
=
π
ω
=
π
2
,可求得ω=2;再利用“五點(diǎn)作圖法”可求得ϕ,從而可得答案.
解答: 解:由圖知,
T
2
=
π
ω
=
11π
12
-
12
=
π
2
,故ω=2.
由“五點(diǎn)作圖法”知,
12
×2+ϕ=
π
2
,解得ϕ=-
π
3
∈(-
π
2
,
π
2
),
故選:A.
點(diǎn)評(píng):本題考查由y=Asin(ωx+φ)的部分圖象確定其解析式,考查正弦函數(shù)的周期性與“五點(diǎn)作圖法”的應(yīng)用,考查識(shí)圖能力,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,正方形ABCD與直角梯形ADEF所在平面互相垂直,∠ADE=90°,AF∥DE,DE=DA=2.
(Ⅰ)求證:AC⊥平面BDE;
(Ⅱ)求四面體BDEF的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=ax2+bx+c(a≠0)滿足f(x+1)=f(-x-3),且f(-2)>f(2),解不等式:f(-2x2+2x-3)>f(x2+4x+3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓C:x2+y2+4x-12y+39=0.若直線l的方程為:3x-4y+5=0,求圓C關(guān)于直線l對(duì)稱的圓C的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在空間直角坐標(biāo)系中,點(diǎn)A(1,2,-1)和坐標(biāo)原點(diǎn)O之間的距離|OA|=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在等比數(shù)列{an}中,公比q≠1,等差數(shù)列{bn}滿足b1=a1=3,b4=a2,b13=a3
(Ⅰ)求數(shù)列{an}與{bn}的通項(xiàng)公式;
(Ⅱ)記cn=
1
(3+bn)log3an
,數(shù)列{cn}的前n項(xiàng)和為Sn,證明:Sn<
3
8
(n∈N*).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求函數(shù)y=2x2-lnx的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一只受傷的丹頂鶴在如圖所示(直角梯形)的草原上飛過,其中AD=
2
,DC=2,BC=1,它可能隨機(jī)在草原上任何一處(點(diǎn)),若落在扇形沼澤區(qū)域ADE以外丹頂鶴能生還,則該丹頂鶴生還的概率是( 。
A、1-
π
10
B、
1
2
-
π
15
C、1-
π
6
D、1-
10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=sin(2x+
π
3
)的圖象可由函數(shù)y=sinx的圖象怎樣變換而來?( 。
A、先向左平移
π
3
,再縱坐標(biāo)不變,橫坐標(biāo)伸長為原來的2倍
B、先向左平移
π
3
,再縱坐標(biāo)不變,橫坐標(biāo)縮短為原來的
1
2
C、先向右平移
π
6
,再縱坐標(biāo)不變,橫坐標(biāo)伸長為原來的2倍
D、先向左平移
π
6
,再縱坐標(biāo)不變,橫坐標(biāo)縮短為原來的
1
2

查看答案和解析>>

同步練習(xí)冊(cè)答案