設0≤a<2n.若sin acosα,則α的取值范圍是

A.()                                     B.(

C.()                            D.(

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

定義:設函數(shù)y=f(x)在(a,b)內(nèi)可導,f'(x)為f(x)的導數(shù),f''(x)為f'(x)的導數(shù)即f(x)的二階導數(shù),若函數(shù)y=f(x) 在(a,b)內(nèi)的二階導數(shù)恒大于等于0,則稱函數(shù)y=f(x)是(a,b)內(nèi)的下凸函數(shù)(有時亦稱為凹函數(shù)).已知函數(shù)f(x)=xlnx
(1)證明函數(shù)f(x)=xlnx是定義域內(nèi)的下凸函數(shù),并在所給直角坐標系中畫出函數(shù)f(x)=xlnx的圖象;
(2)對?x1,x2∈R+,根據(jù)所畫下凸函數(shù)f(x)=xlnx圖象特征指出x1lnx1+x2lnx2≥(x1+x2)[ln(x1+x2)-ln2]與x1lnx1+x2lnx2≥(x1+x2)[ln(x1+x2)-ln2]的大小關系;
(3)當n為正整數(shù)時,定義函數(shù)N (n)表示n的最大奇因數(shù).如N (3)=3,N (10)=5,….記S(n)=N(1)+N(2)+…+N(2n),若
2n
i=1
xi=1
,證明:
2n
i=1
xilnxi≥-ln2n
ln
1
3S(n)-2
(i,n∈N*).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列命題:
①若m∈(0,1],則m+
3
m
≥2
3
;
lim
n→∞
(-2)n-3n
3n+2n
=-1
;
③若無窮數(shù)列an=
1
n(n+2)
,其各項和S=
3
4
;
log32>ln2>
1
2
;
⑤設f(x)=
2x+1
x-1
,(x≠1)
,f'(x)為其導函數(shù),若f'(a)=f'(b),(a≠b),則f(a)+f(b)=4.
其中正確命題有
②③⑤
②③⑤
.(請?zhí)钌夏阏J為正確的所有命題的序號,多填少填均不得分)

查看答案和解析>>

科目:高中數(shù)學 來源:江西省高安中學2012屆高三第三次模擬考試數(shù)學文科試題 題型:044

已知數(shù)列{an}滿足:a1+…+=n2+2n(其中常數(shù)λ>0,n∈N*).

(1)求數(shù)列{an}的通項公式;

(2)當λ=4時,是否存在互不相同的正整數(shù)r,s,t,使得ar,a s,at成等比數(shù)列?若存在,給出r,s,t滿足的條件;若不存在,說明理由;

(3)設Sn為數(shù)列{an}的前n項和.若對任意n∈N*,都有(1-λ)Sn+λan≥2λn恒成立,求實數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(本小題滿分13分)已知函數(shù)f (x)=2n在[0,+上最小值是an∈N*).

(1)求數(shù)列{a}的通項公式;(2)已知數(shù)列{b}中,對任意n∈N*都有ba =1成立,設S為數(shù)列{b}的前n項和,證明:2S<1;(3)在點列A(2n,a)中是否存在兩點A,A(i,j∈N*),使直線AA的斜率為1?若存在,求出所有的數(shù)對(i,j);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:2012年廣東省實驗中學考前熱身訓練數(shù)學試卷(理科)(解析版) 題型:解答題

定義:設函數(shù)y=f(x)在(a,b)內(nèi)可導,f'(x)為f(x)的導數(shù),f''(x)為f'(x)的導數(shù)即f(x)的二階導數(shù),若函數(shù)y=f(x) 在(a,b)內(nèi)的二階導數(shù)恒大于等于0,則稱函數(shù)y=f(x)是(a,b)內(nèi)的下凸函數(shù)(有時亦稱為凹函數(shù)).已知函數(shù)f(x)=xlnx
(1)證明函數(shù)f(x)=xlnx是定義域內(nèi)的下凸函數(shù),并在所給直角坐標系中畫出函數(shù)f(x)=xlnx的圖象;
(2)對?x1,x2∈R+,根據(jù)所畫下凸函數(shù)f(x)=xlnx圖象特征指出x1lnx1+x2lnx2≥(x1+x2)[ln(x1+x2)-ln2]與x1lnx1+x2lnx2≥(x1+x2)[ln(x1+x2)-ln2]的大小關系;
(3)當n為正整數(shù)時,定義函數(shù)N (n)表示n的最大奇因數(shù).如N (3)=3,N (10)=5,….記S(n)=N(1)+N(2)+…+N(2n),若,證明:(i,n∈N*).

查看答案和解析>>

同步練習冊答案