14.求極限:
(1)$\underset{lim}{x→∞}$$\frac{5{x}^{2}}{x+2}$.
(2)$\underset{lim}{x→∞}$$\frac{3\sqrt{x}}{\sqrt{x}-1}$.

分析 (1)將原式分子分母同時除以x,再求極限;
(2)將原式分子分母同時除以$\sqrt{x}$,再求極限.

解答 解:(1)將原式分子分母同時除以x,再求極限,
原式=$\underset{lim}{x→∞}$$\frac{5x^2}{x+2}$=$\underset{lim}{x→∞}$$\frac{5x}{1+\frac{2}{x}}$=∞,即極限不存在;
(2)將原式分子分母同時除以$\sqrt{x}$,再求極限,
原式=$\underset{lim}{x→∞}$$\frac{3\sqrt{x}}{\sqrt{x}-1}$=$\underset{lim}{x→∞}$$\frac{3}{1-\frac{1}{\sqrt{x}}}$=3.

點評 本題主要考查了函數(shù)極限的解法,當(dāng)函數(shù)為分式型時,可以考慮分子分母同時除一個相同的因子,使得極限可求即可,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.等差數(shù)列{an}中,2a3-a72+2a11=0,數(shù)列{bn}是等比數(shù)列,且b7=a7≠0,則b2b12=( 。
A.2B.4C.8D.16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.若函數(shù)f(x)為偶函數(shù),且在(0,+∞)上是減函數(shù),又f(4)=0,則$\frac{f(x)+f(-x)}{3x}$<0的解集(-4,0)∪(4,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)f(x)=|x-2|.
(1)解不等式f(x)+f(x+1)≤2;
(2)若a>0,求證:f(ax)-af(x)≤2f(a+1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.一個幾何體的三視圖如圖所示,則其體積等于$\frac{2}{3}$;表面積等于4+$\sqrt{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知f(x)是定義在(-∞,+∞)上的偶函數(shù),且在(-∞,0]是增函數(shù),設(shè)a=f(log47),b=f(log${\;}_{\frac{1}{2}}$3),c=f(0.20.6),則a,b,c的大小關(guān)系是b<a<c.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.閱讀如圖所示的程序框圖,運行相應(yīng)的程序,若輸出的結(jié)果s=16,則圖中菱形內(nèi)應(yīng)該填寫的內(nèi)容是( 。
A.n<2?B.n<3?C.n<4?D.n<5?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.$\underset{lim}{n→x}$($\frac{2+3}{6}$+$\frac{{2}^{2}+{3}^{2}}{{6}^{2}}$+$\frac{{2}^{3}+{3}^{3}}{{6}^{3}}$+…+$\frac{{2}^{n}+{3}^{n}}{{6}^{n}}$)=$\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.小李以10元一股的價格購買了一支股票,他將股票當(dāng)天的最高價格y(元)與第t個交易日,其中0≤t≤24進(jìn)行了記錄,得到有關(guān)數(shù)據(jù)如下:
t03691215182124
y/元10.013.09.97.010.013.010.017.010.0
他經(jīng)過研究后認(rèn)為單支股票當(dāng)天的最高價格y(元)是第t個交易日的函數(shù)y=f(t),并且認(rèn)為y=f(t)的曲線可近似地看作函數(shù)f(t)=Asinωt+h的圖象,請根據(jù)他的觀點解決問題:試根據(jù)以上數(shù)據(jù),求出函數(shù)f(t)=Asinωt+h的振幅、最小正周期和表達(dá)式.

查看答案和解析>>

同步練習(xí)冊答案