20.已知α為第二象限的角,sinα=$\frac{3}{5}$則$sin(α-\frac{π}{6})$=(  )
A.$\frac{{4+3\sqrt{3}}}{10}$B.$\frac{{4-3\sqrt{3}}}{10}$C.$\frac{{3\sqrt{3}-4}}{10}$D.$\frac{{-3\sqrt{3}-4}}{10}$

分析 由條件利用同角三角函數(shù)的基本關(guān)系求得cosα的值,再利用兩角差的正弦公式求得要求式子的值.

解答 解:∵α為第二象限的角,sinα=$\frac{3}{5}$,∴cosα=-$\sqrt{{1-sin}^{2}α}$=-$\frac{4}{5}$,
∴$sin(α-\frac{π}{6})$=sinαcos$\frac{π}{6}$-cosαsin$\frac{π}{6}$=$\frac{3}{5}×\frac{\sqrt{3}}{2}$+$\frac{4}{5}$×$\frac{1}{2}$=$\frac{3\sqrt{3}+4}{10}$,
故選:A.

點(diǎn)評(píng) 本題主要考查同角三角函數(shù)的基本關(guān)系、兩角差的正弦公式的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.從觀測(cè)點(diǎn)C測(cè)得點(diǎn)A的方位角是北偏東40°,點(diǎn)B的方位角是南偏東20°,若點(diǎn)A,B與點(diǎn)C的距離均為10cm,求A,B兩點(diǎn)之間的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.若sin(π+α)=-$\frac{1}{2}$,則sin(4π-α)的值是(  )
A.$\frac{1}{2}$B.-$\frac{1}{2}$C.-$\frac{\sqrt{3}}{2}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.在△ABC中,內(nèi)角A,B,C的對(duì)邊分別為a,b,c.已知$\frac{cosA-2cosC}{cosB}$=$\frac{2c-a}$.
(Ⅰ)求證:sinC=2sinA;
(Ⅱ)若cosB=$\frac{1}{4}$,b=2,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.已知數(shù)列{an}滿足an+1=an-2(n∈N+),他的前n項(xiàng)的和為Sn,則Sn的最大值是S3是a1=5的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.長(zhǎng)方體ABCD-A1B1C1D1中,若$\overrightarrow{AB}$=3i,$\overrightarrow{AD}$=2j,$\overrightarrow{A{A}_{1}}$=5k,則$\overrightarrow{A{C}_{1}}$=(  )
A.$\overrightarrow{i}$+$\overrightarrow{j}$+$\overrightarrow{k}$B.$\frac{1}{3}$$\overrightarrow{i}$+$\frac{1}{2}$$\overrightarrow{j}$+$\frac{1}{5}$$\overrightarrow{k}$C.3$\overrightarrow{i}$+2$\overrightarrow{j}$+5$\overrightarrow{k}$D.3$\overrightarrow{i}$+2$\overrightarrow{j}$-5$\overrightarrow{k}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.已知數(shù)列{an}是公比為q的單調(diào)遞增的等比數(shù)列,且a1+a4=9,a2a3=8,則a1=1,q=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知$f(x)=sin(2x+\frac{π}{3})+sin(2x-\frac{π}{3}),g(x)=\sqrt{3}cos2x$
(1)設(shè)h(x)=f(x)g(x),求函數(shù)h(x)在[0,π]上的單調(diào)遞減區(qū)間;
(2)若一動(dòng)直線x=t與函數(shù)y=f(x),y=g(x)的圖象分別交于M,N兩點(diǎn),求|MN|的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.(1)已知4x+x-1=6,求$8{x^{\frac{3}{2}}}+{x^{-\frac{3}{2}}}$的值;
(2)若log32=m,log53=n,用m,n表示log415.

查看答案和解析>>

同步練習(xí)冊(cè)答案