已知隨機(jī)變量ξ服從正態(tài)分布N(0,σ2).則“P(-2≤ξ≤2)=0.9”是“P(ξ>2)>0.04”的(  )
A、充分不必要條件
B、必要不充分條件
C、充要條件
D、既不充分也不必要條件
考點(diǎn):正態(tài)分布曲線的特點(diǎn)及曲線所表示的意義
專題:計(jì)算題,概率與統(tǒng)計(jì)
分析:由正態(tài)分布N(0,σ2),得其正態(tài)密度曲線關(guān)于y軸對稱,再結(jié)合正態(tài)曲線的對稱性即可得解.
解答:解:由隨機(jī)變量ξ服從正態(tài)分布N(0,σ2)可知正態(tài)密度曲線關(guān)于y軸對稱,
∵P(-2≤ξ≤2)=0.9,
∴P(ξ>2)=
1-0.9
2
=0.05>0.04
∴“P(-2≤ξ≤2)=0.9”是“P(ξ>2)>0.04”的充分不必要條件.
故選:A.
點(diǎn)評:本題主要考查正態(tài)分布的概率求法,結(jié)合正態(tài)曲線,加深對正態(tài)密度函數(shù)的理解.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=loga(x+c)(a,c為常數(shù),其中a>0,a≠1)的圖象如圖所示,則下列結(jié)論成立的是( 。
A、a>1,c>1
B、a>1,0<c<1
C、0<a<1,c>1
D、0<a<1,0<c<1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知m∈R,函數(shù)f(x)=
|2x+1|,x<1
log2(x-1),x>1
g(x)=x2-2x+2m-1,若函數(shù)y=f(g(x))-m有6個(gè)零點(diǎn),則實(shí)數(shù)m的取值范圍是(  )
A、(0,
3
5
B、(
3
5
,
3
4
)
C、(
3
4
,1)
D、(1,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

圓C過坐標(biāo)原點(diǎn),在兩坐標(biāo)軸上截得的線段長相等,且與直線x+y=4相切,則圓C的方程不可能是( 。
A、(x+1)2+(y+1)2=18
B、(x-2)2+(y+2)2=8
C、(x-1)2+(y-1)2=2
D、(x+2)2+(y-2)2=8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若動點(diǎn)A,B分別在直線l1:x+y-7=0和l2:x+y-5=0上移動,則AB的中點(diǎn)M到原點(diǎn)的距離的最小值為(  )
A、3
2
B、2
2
C、3
3
D、4
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

兩平行直線x+y-1=0與2x+2y+1=0的距離是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,某幾何體的三視圖相同,均為圓周的
1
4
,則該幾何體的表面積為( 。
A、2π
B、
5
4
π
C、π
D、
3
4
π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若空間中四條兩兩不同的直線l1,l2,l3,l4,滿足l1⊥l2,l2⊥l3,l3⊥l4,則下列結(jié)論一定正確的是(  )
A、l1⊥l4
B、l1∥l4
C、l1與l4既不垂直也不平行
D、l1與l4的位置關(guān)系不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列命題:
①在△ABC中,若A<B,則sinA<sinB;
②將函數(shù)y=sin(2x+
π
3
)圖象向右平移
π
3
個(gè)單位,得到函數(shù)y=sin2x的圖象;
③在△ABC中,若AB=2,AC=3,∠ABC=
π
3
,則△ABC必為銳角三角形;
④在同一坐標(biāo)系中,函數(shù)y=sinx的圖象和函數(shù)y=
x
2
的圖象有三個(gè)公共點(diǎn);
其中真命題是( 。
A、①③B、①②
C、②③④D、①③④

查看答案和解析>>

同步練習(xí)冊答案