分析 根據(jù)圖形判斷直角三角形,利用直角三角形求解AE=GEcos2θ=lsinθcos2θ,由AE+BE=lsinθcos2θ+lsinθ=6,求解即可.
解答 解:由已知及對稱性知,GF=BF=lcosθ,GE=BE=lsinθ,
又∠GEA=∠GFB=2θ,
∴AE=GEcos2θ=lsinθcos2θ,
又由AE+BE=lsinθcos2θ+lsinθ=6得:l=$\frac{6}{sinθ(1+cos2θ)}$
=$\frac{6}{sinθ(2-2si{n}^{2}θ)}=\frac{6}{\frac{1}{4}×[2-2×(\frac{1}{4})^{2}]}$=$\frac{64}{5}$.
故答案為:$\frac{64}{5}$.
點(diǎn)評 本題考查了矩形的對折問題、直角三角形的邊角關(guān)系、倍角公式,考查了推理能力與計(jì)算能力,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2$\sqrt{2}$ | B. | 3$\sqrt{2}$ | C. | $\frac{4\sqrt{2}-\sqrt{6}}{2}$ | D. | 2$\sqrt{2}$-1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 第一種 | B. | 第二種 | C. | 兩種一樣 | D. | 無法判斷 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {2,4,5} | B. | {1,2,4,5} | C. | {2,5} | D. | {0,2,3,4,5} |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com