【題目】如圖,在四棱錐ABCD﹣PGFE中,底面ABCD是直角梯形,側(cè)棱垂直于底面,AB∥DC,∠ABC=45°,DC=1,AB=2,PA=1.
(Ⅰ)求PD與BC所成角的大;
(Ⅱ)求證:BC⊥平面PAC;
(Ⅲ)求二面角A﹣PC﹣D的大。
【答案】解:(Ⅰ)取的AB中點(diǎn)H,連接DH,易證BH∥CD,且BH=CD
所以四邊形BHDC為平行四邊形,所以BC∥DH
所以∠PDH為PD與BC所成角
因?yàn)樗倪呅,ABCD為直角梯形,且∠ABC=45°,所以⊥DA⊥AB
又因?yàn)锳B=2DC=2,所以AD=1,因?yàn)镽t△PAD、Rt△DAH、Rt△PAH都為等腰直角三角形,
所以PD=DH=PH=,故∠PDH=60°
(Ⅰ)連接CH,則四邊形ADCH為矩形,∴AH=DC 又AB=2,∴BH=1
在Rt△BHC中,∠ABC=45°,∴CH=BH=1,CB=∴AD=CH=1,AC=
∴AC2+BC2=AB2∴BC⊥AC 又PA平面ABCD∴PA⊥BC
∵PA∩AC=A∴BC⊥平面PAC.
(Ⅲ)如圖,分別以AD、AB、AP為x軸,y軸,z軸
建立空間直角坐標(biāo)系,則由題設(shè)可知:
A(0,0,0),P(0,0,1),C(1,1,0),D(1,0,0),
∴=(0,0,1),=(1,1,﹣1
設(shè)m=(a,b,c)為平面PAC的一個(gè)法向量,則,即
設(shè)a=1,則b=﹣1,∴m=(1,﹣1,0)
同理設(shè)n=(x,y,z) 為平面PCD的一個(gè)法向量,求得n=(1,1,1)
∴cos<m,n>=
所以二面角A﹣PC﹣D為60°
【解析】(1)取的AB中點(diǎn)H,易證∠PDH為PD與BC所成角,解三角形可得;
(2)由已知結(jié)合線面垂直的判定可得:
(3)坐標(biāo)法求得平面的法向量,由向量的夾角可得二面角的大。
【考點(diǎn)精析】關(guān)于本題考查的異面直線及其所成的角和直線與平面垂直的判定,需要了解異面直線所成角的求法:1、平移法:在異面直線中的一條直線中選擇一特殊點(diǎn),作另一條的平行線;2、補(bǔ)形法:把空間圖形補(bǔ)成熟悉的或完整的幾何體,如正方體、平行六面體、長方體等,其目的在于容易發(fā)現(xiàn)兩條異面直線間的關(guān)系;一條直線與一個(gè)平面內(nèi)的兩條相交直線都垂直,則該直線與此平面垂直;注意點(diǎn):a)定理中的“兩條相交直線”這一條件不可忽視;b)定理體現(xiàn)了“直線與平面垂直”與“直線與直線垂直”互相轉(zhuǎn)化的數(shù)學(xué)思想才能得出正確答案.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】把函數(shù)y=cos2x+ sin2x的圖象向左平移m(其中m>0)個(gè)單位,所得圖象關(guān)于y軸對稱,則m的最小值是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某人上午7時(shí)乘船出發(fā),以勻速海里/小時(shí) 從港前往相距50海里的港,然后乘汽車以勻速千米/小時(shí)()自港前往相距千米的市,計(jì)劃當(dāng)天下午4到9時(shí)到達(dá)市.設(shè)乘船和汽車的所要的時(shí)間分別為、小時(shí),如果所需要的經(jīng)費(fèi) (單位:元)
(1)試用含有、的代數(shù)式表示;
(2)要使得所需經(jīng)費(fèi)最少,求和的值,并求出此時(shí)的費(fèi)用.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖是2017年第一季度五省情況圖,則下列陳述正確的是( )
①2017年第一季度 總量和增速均居同一位的省只有1個(gè);
②與去年同期相比,2017年第一季度五個(gè)省的總量均實(shí)現(xiàn)了增長;
③去年同期的總量前三位是江蘇、山東、浙江;
④2016年同期浙江的總量也是第三位.
A. ①② B. ②③④ C. ②④ D. ①③④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對于函數(shù)y=f(x),若在其定義域內(nèi)存在x0 , 使得x0f(x0)=1成立,則稱x0為函數(shù)f(x)的“反比點(diǎn)”.下列函數(shù)中具有“反比點(diǎn)”的是
①f(x)=﹣2x+2; ②f(x)=sinx,x∈[0,2π];
③f(x)=x+ , x∈(0,+∞);④f(x)=ex; ⑤f(x)=﹣2lnx.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知雙曲線的一條漸近線方程是y=x,它的一個(gè)焦點(diǎn)在拋物線y2=24x的準(zhǔn)線上,
(1)求雙曲線的焦點(diǎn)坐標(biāo);
(2)求雙曲線的標(biāo)準(zhǔn)方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】過點(diǎn)(0,4),斜率為﹣1的直線與拋物線y2=2px(p>0)交于兩點(diǎn)A、B,且弦|AB|的長度為4 .
(1)求p的值;
(2)求證:OA⊥OB(O為原點(diǎn)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在區(qū)間[﹣1,1]上任取兩個(gè)數(shù)a,b,在下列條件時(shí),分別求不等式x2+2ax+b2≥0恒成立時(shí)的概率:
(1)當(dāng)a,b均為整數(shù)時(shí);
(2)當(dāng)a,b均為實(shí)數(shù)時(shí).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com