【題目】某人上午7時乘船出發(fā),以勻速海里/小時 從港前往相距50海里的港,然后乘汽車以勻速千米/小時()自港前往相距千米的市,計劃當天下午4到9時到達市.設乘船和汽車的所要的時間分別為、小時,如果所需要的經(jīng)費 (單位:元)
(1)試用含有、的代數(shù)式表示;
(2)要使得所需經(jīng)費最少,求和的值,并求出此時的費用.
【答案】(1) ;(2).
【解析】試題分析:(1)分析題意,先用表示,先用表示,代入,化簡即可;(2)求出滿足的約束條件,由約束條件畫出可行域,要求走得最經(jīng)濟,即求可行域中的最優(yōu)解,將目標函數(shù)看成是一條直線,分析目標函數(shù)與直線截距的關(guān)系,進而求出最優(yōu).
試題解析:(1) ,得
,得
所以 (其中)
(2)
其中,
令目標函數(shù),可行域的端點分別為
則當時,
所以 (元),此時
答:當時,所需要的費用最少,為元.
【方法點晴】本題主要考查線性規(guī)劃的應用及求目標函數(shù)的最值,屬簡單題.求目標函數(shù)最值的一般步驟是“一畫、二移、三求”:(1)作出可行域(一定要注意是實線還是虛線);(2)找到目標函數(shù)對應的最優(yōu)解對應點(在可行域內(nèi)平移變形后的目標函數(shù),最先通過或最后通過的頂點就是最優(yōu)解);(3)將最優(yōu)解坐標代入目標函數(shù)求出最值.
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù),其中為自然對數(shù)的底數(shù).
(Ⅰ)當時,求曲線在點處的切線方程;
(Ⅱ)求函數(shù)在區(qū)間上的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】空氣質(zhì)量主要受污染物排放量及大氣擴散等因素的影響,某市環(huán)保監(jiān)測站2014年10月連續(xù)10天(從左到右對應1號至10號)采集該市某地平均風速及空氣中氧化物的日均濃度數(shù)據(jù),制成散點圖如圖所示.
(Ⅰ)同學甲從這10天中隨機抽取連續(xù)5天的一組數(shù)據(jù),計算回歸直線方程.試求連續(xù)5天的一組數(shù)據(jù)中恰好同時包含氧化物日均濃度最大與最小值的概率;
(Ⅱ)現(xiàn)有30名學生,每人任取5天數(shù)據(jù),對應計算出30個不同的回歸直線方程.已知30組數(shù)據(jù)中有包含氧化物日均濃度最值的有14組.現(xiàn)采用這30個回歸方程對某一天平均風速下的氧化物日均濃度進行預測,若預測值與實測值差的絕對值小于2,則稱之為“擬合效果好”,否則為“擬合效果不好”.根據(jù)以上信息完成下列2×2聯(lián)表,并分析是否有95%以上的把握說擬合效果與選取數(shù)據(jù)是否包含氧化物日均濃度最值有關(guān).
預測效果好 | 擬合效果不好 | 合計 | |
數(shù)據(jù)有包含最值 | 5 | ||
數(shù)據(jù)無包含最值 | 4 | ||
合計 |
參考數(shù)據(jù):
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(其中).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知平面向量 =(1,x), =(2x+3,﹣x)(x∈R).
(1)若 ∥ ,求| ﹣ |
(2)若 與 夾角為銳角,求x的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=2sin(2x+φ)(0<φ<2π)的圖象過點(,-2).
(1)求φ的值;
(2)若f()=,-<α<0,求sin(2α-)的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,拋物線的準線為,取過焦點且平行于軸的直線與拋物線交于不同的兩點,過作圓心為的圓,使拋物線上其余點均在圓外,且.
(Ⅰ)求拋物線和圓的方程;
(Ⅱ)過點作直線與拋物線和圓依次交于,求的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,平面PAD⊥平面ABCD,AB=AD,∠BAD=60°,E、F分別是AP、AD的中點,求證:
(1)直線EF∥平面PCD;
(2)平面BEF⊥平面PAD.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐ABCD﹣PGFE中,底面ABCD是直角梯形,側(cè)棱垂直于底面,AB∥DC,∠ABC=45°,DC=1,AB=2,PA=1.
(Ⅰ)求PD與BC所成角的大小;
(Ⅱ)求證:BC⊥平面PAC;
(Ⅲ)求二面角A﹣PC﹣D的大小.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)().
(1)若在點處的切線與直線垂直,求實數(shù)的值;
(2)求函數(shù)的單調(diào)區(qū)間;
(3)討論函數(shù)在區(qū)間上零點的個數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com