已知復(fù)數(shù)z=(m2+3m-4)+(m2-2m-24)i,當(dāng)實數(shù)m為何值時?
(Ⅰ)z為實數(shù);
(Ⅱ)z為純虛數(shù);
(Ⅲ)z=0.
考點:復(fù)數(shù)的基本概念
專題:數(shù)系的擴充和復(fù)數(shù)
分析:分別由復(fù)數(shù)的定義可得m的方程或不等式,解之可得.
解答: 解:(Ⅰ)由實數(shù)的定義可得m2-2m-24=0,
分解因式可得(m+4)(m-6)=0,解得m=-4或m=6;
(Ⅱ)由純虛數(shù)的定義可得m2+3m-4=0且m2-2m-24≠0,
由m2-2m-24≠0可得m≠-4且m≠6,由m2+3m-4=0可得m=1或m=-4;
綜合可得m=1;
(Ⅲ)由z=0可得m2+3m-4=0且m2-2m-24=0.
由(Ⅱ)可知m=-4
點評:本題考查復(fù)數(shù)的基本概念,屬基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(1)甲盒中有紅,黑,白三種顏色的球各3個,乙盒子中有黃,黑,白三種顏色的球各2個,從兩個盒子中各取1個球,求取出的兩個球是不同顏色的概率.
(2)在單位圓的圓周上隨機取三點A、B、C,求△ABC是銳角三角形的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求與橢圓
y2
25
+
x2
16
=1有共同焦點,且過點(0,2)的雙曲線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=m•6x-4x,m∈R.
(1)當(dāng)m=
4
15
時,求滿足f(x+1)>f(x)的實數(shù)x的范圍;
(2)若f(x)≤9x對任意的x∈R恒成立,求實數(shù)m的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,角A、B、C所對的邊分別為a、b、c,且a<b<c,sinA=
3
a
2b

(Ⅰ)求角B的大;
(Ⅱ)若a=2,b=
7
,求c及△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列程序運行后,a,b,c的值各等于什么?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ex(ax2+x+1),a∈R;
(1)討論f(x)的單調(diào)性;
(2)若f(x)在[0,1]上的最大值為
3e
2
,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

橢圓和雙曲線的中心在原點,對稱軸為坐標軸,它們有相同的焦點(-5,0),(5,0),且它們的離心率都可以使方程2x2+4(2e-1)x+4e2-1=0有相等的實根,求橢圓和雙曲線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知|
b
|=4,
a
b
方向上的投影為
1
2
|
b
|,則
a
b
=
 

查看答案和解析>>

同步練習(xí)冊答案