已知在(-1,1)上的奇函數(shù)f(x)是增函數(shù),若,則a的取值范圍是

A、(-1,1)       B、(0,)      C、(0,1)    D、(1,

 

【答案】

C

【解析】略

 

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知定義在[-3,3]上的函數(shù) y=tx-
12
x3
,(t為常數(shù)).
(1)當t∈[2,6]時,求f(x)在[-2,0]上的最小值及取得最小值時的x;
(2)當t≥6時,證明函數(shù)y=f(x)的圖象上至少有一點在直線y=8上.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•藍山縣模擬)已知函數(shù)f(x)=
-x3+x2+bx+c,(x<1)
alnx,(x≥1)
和圖象過坐標原點O,且在點(-1,f(-1))處的切線的斜率是-5.
(1)求實數(shù)b,c的值;
(2)求函數(shù)f(x)在區(qū)間[-1,1]上的最小值;
(3)若函數(shù)y=f(x)圖象上存在兩點P,Q,使得對任意給定的正實數(shù)a都滿足△POQ是以O為直角頂點的直角三角形,且此三角形斜邊中點在y軸上,求點P的橫坐標的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
kx-1x-1
,若f(2)=3
(1)求k的值;
(2)判斷并證明函數(shù)f(x)在(1,+∞)上的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x-2a
x
在(0,1)上為減函數(shù).
(1)討論f(x)的單調(diào)性(指出單調(diào)區(qū)間);
(2)當a>0時,如果f(x)在(0,1)上為減函數(shù),g(x)=x2-2alnx在(1,2)上是增函數(shù),求實數(shù)a的值;
(3)當a=2時,若g(x)≥2bx-
1
x2
在x∈(0,1]
內(nèi)恒成立,求b的取值范圍.

查看答案和解析>>

同步練習冊答案