分析 (1)求出c,根據(jù)余弦定理求出C的余弦值即可;
(2)根據(jù)倍角公式以及三角形的面積公式得到關(guān)于a,b的方程組,解出即可.
解答 解:(1)由題意可知c=16-(a+b)=7…(2分)
由余弦定理得$cosC=\frac{{{a^2}+{b^2}-{c^2}}}{2ab}=\frac{{{4^2}+{5^2}-{7^2}}}{2×4×5}=-\frac{1}{5}$…(6分)
(2)由$sinA{cos^2}\frac{B}{2}+sinB{cos^2}\frac{A}{2}=2sinC$,
可得$sinA•\frac{1+cosB}{2}+sinB•\frac{1+cosA}{2}=2sinC$,
化簡得sinA+sinAcosB+sinB+sinB•cosA=4sinC
即sinA+sinB+sin(A+B)=4sinC,
sinA+sinB=3sinC即a+b=3c…(8分)
又a+b+c=16∴a+b=12,
由于$S=\frac{1}{2}absinC=18sinC$…(10分)
∴$\left\{\begin{array}{l}ab=36\\ a+b=12\end{array}\right.$,即a=b=6…(12分)
點(diǎn)評 本題考查了正弦定理以及余弦定理的應(yīng)用,考查三角恒等變換,是一道中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
班號 | 一班 | 二班 | 三往 | 四班 | 五班 | 六班 |
頻數(shù) | 5 | 9 | 11 | 9 | 7 | 9 |
滿意人數(shù) | 4 | 7 | 8 | 5 | 6 | 6 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | a<c<b | B. | b<c<a | C. | a<b<c | D. | b<a<c |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{3}$ | B. | $\frac{1}{4}$ | C. | 7 | D. | 不存在 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [-1,$\frac{1}{2}$] | B. | (-1,$\frac{1}{2}$] | C. | [1,+∞) | D. | (-∞,$\frac{1}{2}$) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $-\frac{1}{2}$ | C. | -2 | D. | 2 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com