如圖所示,△ABC是正三角形,AE和CD都垂直于平面ABC,且AE=AB=2DC,F(xiàn)是BE的中點(diǎn).求證:
(1)DF∥平面ABC;
(2)AF⊥BD.
考點(diǎn):直線與平面平行的判定,直線與平面垂直的性質(zhì)
專題:空間位置關(guān)系與距離
分析:(1)取AB的中點(diǎn)G,連接FG,由已知條件推導(dǎo)出四邊形CDFG是矩形,由此能證明DF∥平面ABC.
(2)由已知條件推導(dǎo)出AF⊥BE,CG⊥AB,DF⊥AB,DF⊥FG,從而AF⊥平面BDF,由此能證明AF⊥BD.
解答: 證明:(1)取AB的中點(diǎn)G,連接FG,得FG∥AE,F(xiàn)G=
1
2
AE,
又CD⊥平面ABC,AE⊥平面ABC,
∴CD∥AE,CD=
1
2
AE,
∴FG∥CD,F(xiàn)G=CD,
∵FG⊥平面ABC,
∴四邊形CDFG是矩形,DF∥CG,
CG?平面ABC,DF不包含于平面ABC,
∴DF∥平面ABC.
(2)Rt△ABE中,AE=2a,AB=2a,
F為BE中點(diǎn),∴AF⊥BE,
∵△ABC是正三角形,∴CG⊥AB,
∴DF⊥AB,
又DF⊥FG,
∴DF⊥平面ABE,DF⊥AF,
∴AF⊥平面BDF,∴AF⊥BD.
點(diǎn)評:本題考查直線與平面平行的證明,考查異面直線垂直的證明,解題時要認(rèn)真審題,注意空間思維能力的培養(yǎng).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

△ABC中B=
π
3
且sinA:sinC=3:1,則b:c的值為( 。
A、
3
B、
7
C、2
D、7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的焦距為2,且過點(diǎn)P(1,
3
2

(Ⅰ)橢圓C的方程;
(Ⅱ)設(shè)橢圓C的左右焦點(diǎn)分別為F1,F(xiàn)2,過點(diǎn)F2的直線l與橢圓C交于M,N兩點(diǎn).
(1)當(dāng)直線l的傾斜角為45°時,求|MN|的長;
(2)求△MF1N的內(nèi)切圓的面積的最大值,并求出當(dāng)△MF1N的內(nèi)切圓的面積取最大值時直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=lnx,g(x)=
a
x
(a∈R),設(shè)F(x)=f(x)+g(x),G(x)=f(x)•g(x)
(1)求函數(shù)F(x)的單調(diào)區(qū)間;
(2)若以函數(shù)y=F(x)(x∈(0,2))圖象上任一點(diǎn)P(x0,y0)為切點(diǎn)的切線斜率為k≤
1
2
恒成立,求實(shí)數(shù)a的取值范圍;
(3)當(dāng)a=1時,對任意的x1,x2∈(0,2),且x1<x2,已知存在x0∈(x1,x2)使得G′(x0)=
G(x2)-G(x1)
x2-x1
,求證:x0
x1x2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=lnx-
a(x-1)
x+1
(a∈R,a≠0),g(x)=x2+x.
(1)求函數(shù)h(x)=alnx-
a(x-1)
x+1
•g(x)的單調(diào)區(qū)間,并確定其零點(diǎn)個數(shù);
(2)若f(x)在其定義域內(nèi)單調(diào)遞增,求a的取值范圍;
(3)證明不等式 
1
3
+
1
5
+
1
7
+…+
1
2n+1
<ln
n+1
(n∈N*).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ax2+x+3,在x∈[-1,1]上的最小值為-3,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)A={x|x3-7x2+14x-8=0},B={x|x3+2x2-c2x-2c2=0,c>0}
(1)求A,B的各個元素;
(2)以集合A∪B的任意元素a,b作為二次方程x2+px+q=0的兩個根,在f(x)=x2+px+q的最小值中,求出最大的a,b的值或最小的a,b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l:xsina-y+1=0(a∈R),求其傾斜角φ的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)集合A={(x,y)|2x+y=10},B={(x,y)|3x-y=5},求A∩B;
(2)集合A={(x,y)|2x+y=10},B={y|3x-y=5},求A∩B;
(3)設(shè)集合A={y|2x+y=10},B={y|3x-y=5},求A∩B.

查看答案和解析>>

同步練習(xí)冊答案