已知函數(shù)f(x)=ax2+x+3,在x∈[-1,1]上的最小值為-3,求a的值.
考點:二次函數(shù)在閉區(qū)間上的最值
專題:計算題,函數(shù)的性質(zhì)及應(yīng)用
分析:分類討論,利用x∈[-1,1]上的最小值為-3,求a的值.
解答: 解:a=0時,f(x)=x+3,∴f(-1)=2,不符合.
函數(shù)f(x)=ax2+x+3的對稱軸為x=-
1
2a

a>0,-
1
2a
<-1,則f(-1)=a-1+3=-3,∴a=-5,不符合;
-1≤-
1
2a
<0,則
12a-1
4a
=-3,∴a=
1
24
,不符合;
a<0,則f(-1)=a-1+3=-3,∴a=-5,符合.
點評:本題考查二次函數(shù)在閉區(qū)間上的最值,考查分類討論的數(shù)學思想,考查學生分析解決問題的能力,比較基礎(chǔ).
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

若loga(a+1)<loga(2a)<0,則a的取值范圍是( 。
A、0<a<
1
2
B、
1
2
<a<1
C、0<a<1
D、a>0且a≠1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)函數(shù)f(x)=x3+ax2+bx的圖象與直線y=4相切于M(1,4).
(Ⅰ)求f(x)的解析式;
(Ⅱ)求f(x)的極值;
(Ⅲ)是否存在兩個不等正數(shù)s,t(s<t),當x∈[s,t]時,函數(shù)f(x)=x3+ax2+bx的值域也是[s,t],若存在,求出所有這樣的正數(shù)s,t;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=(2-a)lnx-1,g(x)=lnx+ax2+x(a∈R),令φ(x)=f(x)+g′(x).
(1)當a=0時,求φ(x)的極值;
(2)當a<-2時,求φ(x)的單調(diào)區(qū)間;
(3)當-3<a<-2時,若對?λ1,λ2∈[1,3],使得|φ(λ1)-φ(λ2)|<(m+ln2)a-2ln3恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖所示,△ABC是正三角形,AE和CD都垂直于平面ABC,且AE=AB=2DC,F(xiàn)是BE的中點.求證:
(1)DF∥平面ABC;
(2)AF⊥BD.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

解方程:lgx+2log10xx=2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=xlnx+1.
(1)求函數(shù)f(x)在x∈[e-2,e2]上的最大值與最小值;
(2)若x>1時,函數(shù)y=f(x)的圖象恒在直線y=kx上方,求實數(shù)k的取值范圍;
(3)證明:當n∈N*時,ln(n+1)>
1
2
+
1
3
+
1
4
+…+
1
n+1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)=-
4+
1
x2
,點Pn(an,-
1
an+1
)在曲線y=f(x)上(n∈N*)且a1=1,an>0.
(1)求數(shù)列{an}的通項公式;
(2)若數(shù)列{bn}滿足
1
bn
=-
1
an2
-n+1,對于任意n≥2,n∈N*都有λbn+
1
bn+1
≥λ恒成立,求實數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=ex+ax
(1)當-e<a≤0時,證明:對于任意x∈R,f(x)>0成立;
(2)當a=-1時,是否存在x0∈(0,+∞),使曲線C:g(x)=exlnx-f(x)在點x=x0處的切線斜率與f(x)在R上的最小值相等?若存在,求符合條件的x0的個數(shù);若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案