1.若x,y滿足$\left\{\begin{array}{l}{y-1≥0}\\{x-y+1≥0}\\{x-1≤0}\end{array}\right.$,則x+y的最小值是( 。
A.-1B.1C.2D.3

分析 由約束條件作出可行域,化目標(biāo)函數(shù)為直線方程的斜截式,數(shù)形結(jié)合得到最優(yōu)解,聯(lián)立方程組求得最優(yōu)解的坐標(biāo),代入目標(biāo)函數(shù)得答案.

解答 解:由約束條件$\left\{\begin{array}{l}{y-1≥0}\\{x-y+1≥0}\\{x-1≤0}\end{array}\right.$作出可行域如圖,

A(0,1),令z=x+y,
化目標(biāo)函數(shù)z=x+y為y=-x+z,由圖可知,當(dāng)直線y=-x+z過點(diǎn)A時(shí),直線在y軸上的截距最小,z有最小值為1.
故選:B.

點(diǎn)評(píng) 本題考查簡單的線性規(guī)劃,考查了數(shù)形結(jié)合的解題思想方法,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)f(x)=x3+ax2+bx+1在x=-$\frac{2}{3}$與x=1時(shí)都取得極值
(1)求a,b的值;
(2)求過點(diǎn)(0,1)的f(x)的切線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.設(shè)全集U=R,集合A={x|(x+1)(x-3)<0},B={x|x-1≥0},則圖中陰影部分所表示的集合為( 。
A.{x|x≤-1或x≥3}B.{x|x<1或x≥3}C.{x|x≤1}D.{x|x≤-1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.設(shè)△ABC的內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,且acosB=4,bsinA=3.
(1)求tanB及邊長a的值;
(2)若△ABC的面積S=9,求△ABC的周長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{a}^{x}+1,x≤0}\\{|lnx|,x>0}\end{array}\right.$當(dāng)1<a<2時(shí),關(guān)于x的方程f[f(x)]=a實(shí)數(shù)解的個(gè)數(shù)為( 。
A.2B.3C.4D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.古代科舉制度始于隋而成于唐,完備于宋、元.明代則處于其發(fā)展的鼎盛階段.其中表現(xiàn)之一為會(huì)試分南卷、北卷、中卷按比例錄取,其錄取比例為11:7:2.若明宣德五年會(huì)試錄取人數(shù)為100.則中卷錄取人數(shù)為10.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知$y=\sqrt{x}$,求與直線y=-2x-4垂直的切線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.函數(shù)y=$\frac{x^2}{{{2^x}-2}}$的圖象大致是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.甲、乙兩組數(shù)據(jù)的莖葉圖如圖所示,其中m為小于10的自然數(shù),已知甲組數(shù)據(jù)的中位數(shù)大于乙組數(shù)據(jù)的中位數(shù),則甲組數(shù)據(jù)的平均數(shù)也大于乙組數(shù)據(jù)的平均數(shù)的概率為$\frac{3}{5}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案