11.甲、乙兩組數(shù)據(jù)的莖葉圖如圖所示,其中m為小于10的自然數(shù),已知甲組數(shù)據(jù)的中位數(shù)大于乙組數(shù)據(jù)的中位數(shù),則甲組數(shù)據(jù)的平均數(shù)也大于乙組數(shù)據(jù)的平均數(shù)的概率為$\frac{3}{5}$.

分析 由甲的中位數(shù)大于乙的中位數(shù)知m的可能取值為0,1,2,3,4;由甲的平均數(shù)大于乙的平均數(shù)知m<3,由此求出對應(yīng)的概率.

解答 解:由甲的中位數(shù)大于乙的中位數(shù)知,
m=0,1,2,3,4;
又由甲的平均數(shù)大于乙的平均數(shù)知,
m<3,
即m=0,1,2;
故所求概率為P=$\frac{3}{5}$.
故答案為:$\frac{3}{5}$.

點評 本題考查了莖葉圖與古典概型的概率計算問題,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.若x,y滿足$\left\{\begin{array}{l}{y-1≥0}\\{x-y+1≥0}\\{x-1≤0}\end{array}\right.$,則x+y的最小值是( 。
A.-1B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.若sinθ>cosθ,且tanθ<0,則角θ的終邊位于( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.使函數(shù)f(x)=$\root{3}{{x}^{2}(1-{x}^{2})}$滿足羅爾定理條件的區(qū)間是( 。
A.[0,1]B.[-1,1]C.[-2,2]D.[-$\frac{3}{5}$,$\frac{4}{5}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.設(shè)直線x-y-a=0與圓x2+y2=4相交于A,B兩點,O為坐標原點,若△AOB為等邊三角形,則實數(shù)a的值為(  )
A.$±\sqrt{3}$B.$±\sqrt{6}$C.±3D.±9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知橢圓E:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的左頂點為A,右焦點為F(1,0),過點A且斜率為1的直線交橢圓E于另一點B,交y軸于點C,$\overrightarrow{AB}=6\overrightarrow{BC}$.
(1)求橢圓E的方程;
(2)過點F作直線l與橢圓E交于M,N兩點,連接MO(O為坐標原點)并延長交橢圓E于點Q,求△MNQ面積的最大值及取最大值時直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.設(shè)函數(shù)$f(x)={log_{\frac{1}{2}}}(a{x^2}+2x-1)$,$g(x)=\frac{{2+2sin(2x+\frac{π}{6})}}{{sinx+\sqrt{3}cosx}}$,若不論x2取何值,f(x1)>g(x2)對任意${x_1}∈[\frac{7}{10},\frac{3}{2}]$總是恒成立,則a的取值范圍為(  )
A.$(-∞,-\frac{7}{10})$B.$(-∞,-\frac{4}{5})$C.$(-\frac{63}{80},+∞)$D.$(-\frac{40}{49},-\frac{4}{5})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.如圖,在矩形ABCD中,AB=2BC,點M在邊CD上,點F在邊AB上,且DF⊥AM,垂足為E,若將△ADM沿AM折起,使點D位于D′位置,連接D′B,D′C,得四棱錐D′-ABCM.
(1)求證:平面D′EF⊥平面AMCB;
(2)若∠D′EF=$\frac{π}{3}$,直線D′F與平面ABCM所成角的大小為$\frac{π}{3}$,求幾何體A-D′EF的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.如果一條直線與一個平面平行,那么稱此直線與平面構(gòu)成一個“平面線面組”.在一個長方體中,由兩個頂點確定的直線與含有四個頂點的平面構(gòu)成的“平行線面組”的個數(shù)是48.

查看答案和解析>>

同步練習(xí)冊答案