設(shè)函數(shù)f(x)=ax3+bx2+cx(c<0),其圖象在點(diǎn)A(1,0)處的切線的斜率為0,則f(x)的單調(diào)遞增區(qū)間是________.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知命題:函數(shù)在內(nèi)單調(diào)遞減;:曲線與軸沒(méi)有交點(diǎn).如果“或”是真命題,“且”是假命題,則實(shí)數(shù)的取值范圍是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
若a>0,b>0,且函數(shù)f(x)=4x3-ax2-2bx+2在x=1處有極值,則ab的最大值等于( )
A.2 B.3 C.6 D.9
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知函數(shù),當(dāng)時(shí),函數(shù)取得極大值.
(1)求實(shí)數(shù)的值;
(2)已知結(jié)論:若函數(shù)在區(qū)間內(nèi)導(dǎo)數(shù)都存在,且,則存在,使得.試用這個(gè)結(jié)論證明:若,函數(shù),則對(duì)任意,都有;
(3)已知正數(shù)滿(mǎn)足求證:當(dāng),時(shí),對(duì)任意大于,且互不相等的實(shí)數(shù),都有
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知函數(shù)f(x)在R上滿(mǎn)足f(x)=2f(2-x)-x2+8x-8,則曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程是( )
A.y=2x-1 B.y=x C.y=3x-2 D.y=-2x+3
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
設(shè)f(x)=ax3+bx+c(a≠0)為奇函數(shù),其圖象在點(diǎn)(1,f(1))處的切線與直線x-6y-7=0垂直,導(dǎo)函數(shù)f′(x)的最小值為-12.
(1)求函數(shù)f(x)的解析式;
(2)求函數(shù)f(x)的單調(diào)增區(qū)間,并求函數(shù)f(x)在[-1,3]上的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
如圖,若一個(gè)空間幾何體的三視圖中,正視圖和側(cè)視圖都是直角三角形,其直角邊均為1,則該幾何體的體積為( 。
A. B. C. D.1
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知函數(shù)是R上的偶函數(shù),其圖象關(guān)于點(diǎn)對(duì)稱(chēng),且在區(qū)間上是單調(diào)函數(shù).求的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com