6.sin3,sin1.5,cos8.5的大小關(guān)系為(  )
A.sin1.5<sin3<cos8.5B.cos8.5<sin3<sin1.5
C.sin1.5<cos8.5<sin3D.cos8.5<sin1.5<sin3

分析 首先利用正余弦函數(shù)的周期性來化簡,并通過化簡后的函數(shù)單調(diào)性來判斷即可.

解答 解:由于cos8.5=cos(8.5-2π),因為$\frac{π}{2}<8.5-2π<π$,所以cos8.5<0,
又sin3=sin(π-3)<sin1.5,
∴cos8.5<sin3<sin1.5.
故選:B.

點評 本題主要考查了正余弦函數(shù)的周期性以及單調(diào)性等基礎(chǔ)知識,屬簡單題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.如圖①,在邊長為2的正方形ABCD中,E,F(xiàn)分別是AB,BC的中點,現(xiàn)在沿DE,DF及EF把△ADE,△CDF和△BEF折起,使A,B,C三點重合,重合后的點記作P,如圖②所示.
(1)求證:PD⊥EF;
(2)求二面角D-EF-P的平面角的正切值.
(3)求點P到平面DEF的距離

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知雙曲線$\frac{x^2}{m}$-$\frac{y^2}{n}$=1的一條漸近線方程為y=$\frac{4}{3}$x,則該雙曲線的離心率e為$\frac{5}{3}$或$\frac{5}{4}$..

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知α,β是兩個不同的平面,m,n是兩條不同的直線,則下列命題中正確的是( 。
A.若m∥n,m?β,則n∥βB.若m∥α,α∩β=n,則m∥n
C.若m⊥α,m⊥β,則α∥βD.若m⊥β,α⊥β,則m∥α

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.函數(shù)f(x)=$\frac{2x-1}{x+1}$的對稱中心是( 。
A.(1,$\frac{1}{2}$)B.(1,2)C.(2,-1)D.(-1,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知拋物線C:y2=8x的焦點為F,直線y=2x-8與拋物線C相交于A,B兩點,則tan∠AFB=(  )
A.$\frac{3}{4}$B.$-\frac{3}{4}$C.$\frac{4}{3}$D.$-\frac{4}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.如圖,正方體ABCD-A′B′C′D′的棱長為a,連接A′C′,A′D,A′B,BD,BC′,C′D,得到一個三棱錐.求:
(1)三棱錐A′-BC′D的體積.
(2)若球O1使得其與三棱錐A′-BC′D的六條棱都相切,三棱錐A′-BC′D外接球為O2,內(nèi)切球為O3,求球O1,O2,O3半徑的比值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知函數(shù)f(x)在實數(shù)集R上具有下列性質(zhì):
①直線x=1是函數(shù)f(x)的一條對稱軸;
②f(x+2)=-f(x);
③當1≤x1<x2≤3時,[f(x2)-f(x1)]•(x2-x1)<0,
則f(2 015)、f(2 016)、f(2 017)從大到小的順序為f(2017)>f(2016)>f(2015).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知p:ax2-x+$\frac{1}{16}$a>0對于任意x恒成立;q:a≥1,如果命題“p∨q為真,p∧q為假”,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案