19.一個(gè)盒子里裝有標(biāo)號(hào)為1,2,3,4,5的5張標(biāo)簽,隨機(jī)地抽取了3張標(biāo)簽,則取出的3張標(biāo)簽的標(biāo)號(hào)的平均數(shù)是3的概率為$\frac{1}{5}$.

分析 從1,2,3,4,5這五個(gè)數(shù)中任取3個(gè)數(shù),先求出基本基本事件總數(shù),再用列舉法求出三個(gè)數(shù)的平均數(shù)是3包含的基本事件個(gè)數(shù),由此能求出取出的3張標(biāo)簽的標(biāo)號(hào)的平均數(shù)是3的概率.

解答 解:從1,2,3,4,5這五個(gè)數(shù)中任取3個(gè)數(shù),
用列舉法可知,共有10種情況,
而其中三個(gè)數(shù)的平均數(shù)是3的只有1,3,5和2,3,4兩種情況,
∴取出的3張標(biāo)簽的標(biāo)號(hào)的平均數(shù)是3的概率為$p=\frac{2}{10}=\frac{1}{5}$.
故答案為:$\frac{1}{5}$.

點(diǎn)評(píng) 本題考查概率的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意等可能事件概率計(jì)算公式的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.網(wǎng)格紙上小正方形的邊長(zhǎng)為1,如圖畫出的是某幾何體的三視圖,則該幾何體的體積為(  )
A.44B.56C.68D.72

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0)的圖象與直線y=b(0<b<A)相交,其中一個(gè)交點(diǎn)P的橫坐標(biāo)為4,若與P相鄰的兩個(gè)交點(diǎn)的橫坐標(biāo)為2,8,則函數(shù)f(x)(  )
A.在[0,3]上是減函數(shù)B.在[-3,0]上是減函數(shù)
C.在[0,π]上是減函數(shù)D.在[-π,0]上是減函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.設(shè)點(diǎn)O是邊長(zhǎng)為1的正△ABC的中心(如圖所示),則($\overrightarrow{OA}$+$\overrightarrow{OB}$)•($\overrightarrow{OA}$+$\overrightarrow{OC}$)=( 。
A.$\frac{1}{9}$B.-$\frac{1}{9}$C.-$\frac{1}{6}$D.$\frac{1}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知b∈R,若(2+bi)(2-i)為純虛數(shù),則|1+bi|=$\sqrt{17}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)=Asin(x+φ)(A>0,0<φ<π)的最小值是-2,其圖象經(jīng)過點(diǎn)M($\frac{π}{3}$,1).
(1)求f(x)的解析式;
(2)已知α,β∈(0,$\frac{π}{2}$),且f(α)=$\frac{8}{5}$,f(β)=$\frac{24}{13}$,求f(α-β)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,底面ABCD是菱形,若AB=2,∠BAD=60°.則當(dāng)四棱錐P-ABCD的體積等于2$\sqrt{3}$時(shí),則PC=$\sqrt{21}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知函數(shù)f(x)=$\frac{2x}{3x+2}$,數(shù)列{an}滿足a1=1,an+1=f(an).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)(理)設(shè)bn=anan+1,數(shù)列{bn}的前n項(xiàng)和為Sn,若Sn<$\frac{m-2016}{2}$對(duì)一切正整數(shù)n都成立,求最小的正整數(shù)m的值.
(2)(文)設(shè)bn=$\frac{1}{a_n}$×2n,數(shù)列{bn}的前n項(xiàng)和為Sn,求Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知集合M={$\frac{π}{2}$,$\frac{π}{3}$,-$\frac{π}{4}}$},N={x|sinx>0},則M∩N為(  )
A.{$\frac{π}{2}$,$\frac{π}{3}$,-$\frac{π}{4}$}B.{$\frac{π}{2}$,$\frac{π}{3}$}C.{$\frac{π}{3}$,-$\frac{π}{4}$}D.{$\frac{π}{2}$,-$\frac{π}{4}$}

查看答案和解析>>

同步練習(xí)冊(cè)答案