7.已知i為虛數(shù)單位,m,n都為實(shí)數(shù),且m(1+i)=1+ni,則($\frac{m+ni}{m-ni}$)2013=(  )
A.-1B.iC.1D.-i

分析 利用復(fù)數(shù)相等、復(fù)數(shù)的運(yùn)算法則、周期性即可得出.

解答 解:∵m(1+i)=1+ni,即m+mi=1+ni,∴m=1,m=n,
因此m=n=1.
∴$\frac{1+i}{1-i}$=$\frac{(1+i)^{2}}{(1-i)(1+i)}$=$\frac{2i}{2}$=i.
則($\frac{m+ni}{m-ni}$)2013=$(\frac{1+i}{1-i})^{2013}$=i2013=(i4503•i=i.
故選:B.

點(diǎn)評(píng) 本題考查了復(fù)數(shù)相等、復(fù)數(shù)的運(yùn)算法則、周期性,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.方程x2+y2-4tx-2ty+3t2-4=0(t為參數(shù))所表示的圓的圓心軌跡方程是x-2y=0(結(jié)果化為普通方程)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.若命題p:(x-m)(x-m-2)≤0;命題q:|4x-3|≤1,且p是q的必要非充分條件,則實(shí)數(shù)m的取值范圍是[-1,$\frac{1}{2}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.設(shè)全集為R,A={x|2≤x<5 }   B={ x|x>4 }  求:
①A∩B       ②A∪B       ③A∩(∁RB)       ④∁RA)∩(∁RB )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.不等式|x2-2|<2的解集是( 。
A.(-2,0)∪(0,2)B.(-2,2)C.(-1,0)∪(0,1)D.(-1,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.在△ABC中,點(diǎn)A(1,1),點(diǎn)B(3,3),點(diǎn)C在x軸上,當(dāng)cos∠ACB取得最小值時(shí),點(diǎn)C的坐標(biāo)為($\sqrt{6}$,0).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.下列有關(guān)命題的說法正確的是( 。
A.命題:若x=y,則sinx=siny的逆否命題為真命題
B.x>2是x2-3x+2>0的必要不充分條件
C.命題:若x2=1,則x=1的否命題為“若x2=1,則x≠1”
D.命題:?x∈R使得x2+x+1<0的否定為:?x∈R均有x2+x+1<0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.在△ABC中,三個(gè)內(nèi)角分別是A、B、C,向量$\overrightarrow{a}$=($\frac{\sqrt{5}}{2}$cos$\frac{C}{2}$,cos$\frac{A-B}{2}$),當(dāng)tanA•tanB=$\frac{1}{9}$時(shí),則|$\overrightarrow{a}$|=$\frac{3\sqrt{2}}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.某城簾市2013年末汽車保有量30萬輛,預(yù)計(jì)此后每年報(bào)廢上一年末汽車保有量的6%,并且每年新增汽車3萬輛,該城市的環(huán)境承載能力要求汽車保有量不超過45萬輛.
(1)求2014年,2015年末的汽車保有量;
(2)將來該城市的汽車保有量會(huì)不會(huì)超出環(huán)境承載能力,若會(huì),求出到哪一年末會(huì)超出.

查看答案和解析>>

同步練習(xí)冊(cè)答案