9.若命題p:(x-m)(x-m-2)≤0;命題q:|4x-3|≤1,且p是q的必要非充分條件,則實數(shù)m的取值范圍是[-1,$\frac{1}{2}$].

分析 分別由命題命題p和命題q解出它們對變的不等式的解集,根據(jù)p是q的必要不充分條件,說明q的解集是p解集的真子集,建立不等式組可得出實數(shù)m的取值范圍.

解答 解:命題p:(x-m)(x-m-2)≤0⇒m≤x≤m+2,
命題q:|4x-3|≤1⇒-1≤4x-3≤1⇒$\frac{1}{2}$≤x≤1,
∵p是q的必要非充分條件
∴[$\frac{1}{2}$,1]⊆[m,m+2]
∴$\left\{\begin{array}{l}{m≤\frac{1}{2}}\\{m+2≥1}\end{array}\right.$(等號不能同時成立)⇒-1≤m≤$\frac{1}{2}$
故答案為:$[-1,\frac{1}{2}]$.

點評 本題以不等式的解集為例,考查了充分條件與必要條件的判斷,屬于基礎題.解題時注意充分條件與必要條件之間范圍的包含關(guān)系.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

19.所給命題:
①菱形的兩條對角線互相平分的逆命題;
②{x|x2+1=0,x∈R}=∅或{0}=∅;
③對于命題:“p且q”,若p假q真,則“p且q”為假;
④有兩條邊相等且有一個內(nèi)角為60°是一個三角形為等邊三角形的充要條件.
其中為真命題的序號為③④.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.若關(guān)于x的不等式$\frac{x-a}{x-b}>0$(a,b∈R)的解集為(-∞,1)∪(4,+∞),則a+b=5.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.如圖,有一直角墻角,兩邊的長度足夠長,若P處有一棵樹與兩墻的距離分別是4m和am(0<a<12),不考慮樹的粗細.現(xiàn)用16m長的籬笆,借助墻角圍成一個矩形花圃ABCD.設此矩形花圃的最大面積為u,若將這棵樹圍在矩形花圃內(nèi),則函數(shù)u=f(a)(單位m2)的圖象大致是(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.已知在二項式${(\root{3}{x}-\frac{1}{{2\root{3}{x}}})^n}$的展開式中,第6項為常數(shù)項.
(1)求n的值,并求含x2項的系數(shù);
(2)求展開式中所有的有理項.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.函數(shù)y=f(x)定義域是D,若對任意x1,x2∈D,當x1<x2時,都有f(x1)≤f(x2),則稱函數(shù)f(x)在D上為非減函數(shù),設函數(shù)y=f(x)在[0,1]上為非減函數(shù),滿足條件:①f(0)=0;②f($\frac{x}{3}$)=$\frac{1}{2}$f(x);③f(1-x)=1-f(x);則f($\frac{1}{3}$)+f($\frac{1}{2016}$)=$\frac{65}{128}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.設集合A={x|-1≤x≤2},B={x|m-1≤x≤2m+1},已知B⊆A.
(1)當x∈N時,求集合A的子集的個數(shù);
(2)求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.已知i為虛數(shù)單位,m,n都為實數(shù),且m(1+i)=1+ni,則($\frac{m+ni}{m-ni}$)2013=( 。
A.-1B.iC.1D.-i

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.三棱錐P-ABC的兩側(cè)面PAB、PBC都是邊長為2的正三角形,AC=$\sqrt{3}$,則二面角A-PB-C的大小為( 。
A.60°B.90°C.120°D.150°

查看答案和解析>>

同步練習冊答案