【題目】某同學(xué)為研究函數(shù) 的性質(zhì),構(gòu)造了如圖所示的兩個(gè)邊長(zhǎng)為1的正方形ABCD和BEFC,點(diǎn)P是邊BC上的一個(gè)動(dòng)點(diǎn),設(shè)CP=x,則AP+PF=f(x).請(qǐng)你參考這些信息,推知函數(shù)f(x)的值域是 .
【答案】[ , ]
【解析】解:Rt△PCF中,PF= =
同理可得,Rt△PAB中,PA=
∴PA+PF= +
∵當(dāng)A、P、F三點(diǎn)共線時(shí),即P在矩形ADFE的對(duì)角線AF上時(shí),PA+PF取得最小值 =
當(dāng)P在點(diǎn)B或點(diǎn)C時(shí),PA+PF取得最大值 +1
∴ ≤PA+PF≤ +1,可得函數(shù)f(x)=AP+PF的值域?yàn)閇 , ].
故答案為:[ , ].
由題意,用CP的長(zhǎng)度表示出PA、PF,在△PAF中,PA+PF≥AF,當(dāng)P、A、F三點(diǎn)共線時(shí)取得最小值,當(dāng)P在點(diǎn)B或點(diǎn)C時(shí)取得最大值。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知向量 , ,設(shè) .
(Ⅰ)若f(α)=2,求 的值;
(Ⅱ)在△ABC中,角A,B,C的對(duì)邊分別是a,b,c,且滿足(2a﹣b)cosC=ccosB,求f(A)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若Sn為等差數(shù)列{an}的前n項(xiàng)和,且a1=1,S10=55.記bn=[lnan],其中[x]表示不超過(guò)x的最大整數(shù),如[0.9]=0,[lg99]=1.則數(shù)列{bn}的前2017項(xiàng)和為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓C: =1(a>b>0).
(1)若橢圓的離心率為 ,且點(diǎn)(1, )在橢圓上,
①求橢圓的方程;
②設(shè)P(﹣1,﹣ ),R、S分別為橢圓C的右頂點(diǎn)和上頂點(diǎn),直線PR和PS與y軸和x軸相交于點(diǎn)M,N,求直線MN的方程.
(2)設(shè)D(b,0),過(guò)D點(diǎn)的直線l與橢圓C交于E、F兩點(diǎn),且E、F均在y軸的右側(cè), =2 ,求橢圓離心率的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖扇形AOB是一個(gè)觀光區(qū)的平面示意圖,其中∠AOB的圓心角為 ,半徑OA為1Km,為了便于游客觀光休閑,擬在觀光區(qū)內(nèi)鋪設(shè)一條從入口A到出口B的觀光道路,道路由圓弧AC、線段CD及線段BD組成.其中D在線段OB上,且CD∥AO,設(shè)∠AOC=θ,
(1)用θ表示CD的長(zhǎng)度,并寫出θ的取值范圍.
(2)當(dāng)θ為何值時(shí),觀光道路最長(zhǎng)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列{an}滿足a0∈R,an+1=2n﹣3an , (n=0,1,2,…)
(1)設(shè)bn= ,試用a0 , n表示bn(即求數(shù)列{bn}的通項(xiàng)公式);
(2)求使得數(shù)列{an}遞增的所有a0的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】圖中,小方格是邊長(zhǎng)為1的正方形,圖中粗線畫出的是某幾何體的三視圖,且該幾何體的頂點(diǎn)都在同一球面上,則該幾何體的外接球的表面積為( 。
A.32π
B.48π
C.50π
D.64π
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xoy中,曲線C1是以C1(3,1)為圓心, 為半徑的圓.以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,直線C2:ρsinθ﹣ρcosθ=1.
(1)求曲線C1的參數(shù)方程與直線C2的直角坐標(biāo)方程;
(2)直線C2與曲線C1相交于A,B兩點(diǎn),求△ABC1的周長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù) ,若對(duì)任意的x∈R,f(x)>x恒成立,則實(shí)數(shù)a的取值范圍是( 。
A.(﹣2,e)
B.(﹣∞,e)
C.(1,+∞)
D.(﹣∞,1)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com