【題目】設函數(shù) ,若對任意的x∈R,f(x)>x恒成立,則實數(shù)a的取值范圍是( 。
A.(﹣2,e)
B.(﹣∞,e)
C.(1,+∞)
D.(﹣∞,1)
【答案】A
【解析】解:設 ,
依題意可知g(x)>0恒成立,
⑴當x<0時, ,
∴a>﹣2;
⑵當x≥0時,f′(x)=ex﹣a,當a∈(﹣2,1]時,f′(x)≥0,f(x)單調遞增,
所以f(x)min=f(0)=1>0,滿足題意;
當a>1時,令f′(x)=0,得x=lna,
當x∈[0,lna)時,f′(x)<0,f(x)單調遞減,
當x∈(lna,+∞)時,f′(x)>0,f(x)單調遞增,
所以當x=lna時,f(x)取得極小值,且為最小值f(lna)=a﹣alna,
根據(jù)題意,a﹣alna>0,所以1﹣lna>0,lna<1,a<e,
∴a∈(1,e).
綜上所述,實數(shù)a的取值范圍是(﹣2,e).
故答案為:A.
由題意可得設 g ( x ) = f ( x ) x,對分段函數(shù)進行討論,當x<0時, g ( x )=a+()+(x),根據(jù)基本不等式可得 g ( x )≥ a + 2 > 0, 即得a>﹣2。當x≥0時,求導可得f′(x)≥0,f(x)單調遞增,即得f(x)min=f(0)=1>0。利用導數(shù)求得函數(shù)增減性和最小值,根據(jù)題意,a﹣alna>0解得1<a<e,綜上所述實數(shù)a的取值范圍是(﹣2,e)。
科目:高中數(shù)學 來源: 題型:
【題目】某同學為研究函數(shù) 的性質,構造了如圖所示的兩個邊長為1的正方形ABCD和BEFC,點P是邊BC上的一個動點,設CP=x,則AP+PF=f(x).請你參考這些信息,推知函數(shù)f(x)的值域是 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=aex﹣2x﹣2a,且a∈[1,2],設函數(shù)f(x)在區(qū)間[0,ln2]上的最小值為m,則m的取值范圍是( 。
A.[﹣2,﹣2ln2]
B.[﹣2,﹣ ]
C.[﹣2ln2,﹣1]
D.[﹣1,﹣ ]
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系xOy中,以O為極點,x軸正半軸為極軸建立極坐標系,直線l的極坐標方程為ρcosθ=a(a>0),Q為l上一點,以OQ為邊作等邊三角形OPQ,且O、P、Q三點按逆時針方向排列.
(Ⅰ)當點Q在l上運動時,求點P運動軌跡的直角坐標方程;
(Ⅱ)若曲線C:x2+y2=a2 , 經(jīng)過伸縮變換 得到曲線C′,試判斷點P的軌跡與曲線C′是否有交點,如果有,請求出交點的直角坐標,沒有則說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知某中學高三文科班學生共有800人參加了數(shù)學與地理的水平測試,學校決定利用隨機數(shù)表法從中抽取100人進行成績抽樣調查,先將800人按001,002,…,800進行編號.
(1)如果從第8行第7列的數(shù)開始向右讀,請你依次寫出最先檢查的3個人的編號;(下面摘取了第7行到第9行)
84 42 17 53 31 57 24 55 06 88 77 04 74 47 67 21 76 33 50 25 83 92 12 06 76
63 01 63 78 59 16 95 56 67 19 98 10 50 71 75 12 86 73 58 07 44 39 52 38 79
33 21 12 34 29 78 64 56 07 82 52 42 07 44 38 15 51 00 13 42 99 66 02 79 54
(2)抽取的100人的數(shù)學與地理的水平測試成績如下表:
人數(shù) | 數(shù)學 | |||
優(yōu)秀 | 良好 | 及格 | ||
地理 | 優(yōu)秀 | 7 | 20 | 5 |
良好 | 9 | 18 | 6 | |
及格 | a | 4 | b |
成績分為優(yōu)秀、良好、及格三個等級;橫向、縱向分別表示地理成績與數(shù)學成績,例如:表中數(shù)學成績?yōu)榱己玫娜藬?shù)共有20+18+4=42.
①若在該樣本中,數(shù)學成績優(yōu)秀率是30%,求a,b的值;
②在地理成績及格的學生中,已知a≥11,b≥7,求數(shù)學成績優(yōu)秀人數(shù)比及格人數(shù)少的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù) .
(1)求f(x)在(1,0)處的切線方程;
(2)求證: ;
(3)若lng(x)≤ax2對任意x∈R恒成立,求實數(shù)a的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=lnx﹣kx+k(k∈R).
(Ⅰ)求f(x)在[1,2]上的最小值;
(Ⅱ)若 ,對x∈(﹣1,1)恒成立,求正數(shù)a的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知f(x)=|ax﹣1|,若實數(shù)a>0,不等式f(x)≤3的解集是{x|﹣1≤x≤2}.
(Ⅰ)求a的值;
(Ⅱ)若 <|k|存在實數(shù)解,求實數(shù)k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】四支足球隊進行單循環(huán)比賽(每兩隊比賽一場),每場比賽勝者得3分,負者得0分,平局雙方各得1分.比賽結束后發(fā)現(xiàn)沒有足球隊全勝,且四隊得分各不相同,則所有比賽中最多可能出現(xiàn)的平局場數(shù)是( 。
A.2
B.3
C.4
D.5
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com