如圖,某市準(zhǔn)備在道路EF的一側(cè)修建一條運(yùn)動(dòng)比賽道,賽道的前一部分為曲線段FBC,該曲線段是函數(shù) ,時(shí)的圖象,且圖象的最高點(diǎn)為B(-1,2)。賽道的中間部分為長(zhǎng)千米的直線跑道CD,且CD// EF。賽道的后一部分是以O(shè)為圓心的一段圓弧.
(1)求的值和的大。
(2)若要在圓弧賽道所對(duì)應(yīng)的扇形ODE區(qū)域內(nèi)建一個(gè)“矩形草坪”,矩形的一邊在道路EF上,一個(gè)頂點(diǎn)在半徑OD上,另外一個(gè)頂點(diǎn)P在圓弧上,且,求當(dāng)“矩形草坪”的面積取最大值時(shí)的值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
若實(shí)數(shù)、、滿足,則稱比接近.
(1)若比3接近0,求的取值范圍;
(2)對(duì)任意兩個(gè)不相等的正數(shù)、,證明:比接近;
(3)已知函數(shù)的定義域.任取,等于和中接近0的那個(gè)值.寫出函數(shù)的解析式,并指出它的奇偶性、最小正周期、最小值和單調(diào)性(結(jié)論不要求證明).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
如果函數(shù)的定義域?yàn)?sub>,對(duì)于定義域內(nèi)的任意,存在實(shí)數(shù)使得成立,則稱此函數(shù)具有“性質(zhì)”.
(1)判斷函數(shù)是否具有“性質(zhì)”,若具有“性質(zhì)”求出所有的值;若不具有“性質(zhì)”,請(qǐng)說(shuō)明理由.
(2)已知具有“性質(zhì)”,且當(dāng)時(shí),求在上的最大值.
(3)設(shè)函數(shù)具有“性質(zhì)”,且當(dāng)時(shí),.若與交點(diǎn)個(gè)數(shù)為2013個(gè),求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
關(guān)于函數(shù)有下列命題:
⑴為偶函數(shù)
⑵要得到函數(shù)的圖象,只需將的圖象向右平移個(gè)單位。
⑶的圖象關(guān)于直線對(duì)稱
⑷在[]內(nèi)的增區(qū)間為
其中正確命題的序號(hào)為_____
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
設(shè)為坐標(biāo)平面內(nèi)一點(diǎn),O為坐標(biāo)原點(diǎn),記f(x)=|OM|,當(dāng)x變化時(shí),函數(shù) f(x)的最小正周期是
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知函數(shù),則是
A.單調(diào)遞增函數(shù) B.單調(diào)遞減函數(shù) C.奇函數(shù) D.偶函數(shù)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com