【題目】已知函數(shù),.

(1)當(dāng)時(shí),求的最小值;

(2)當(dāng)時(shí),若存在,使得對(duì)任意的,都有恒成立,求實(shí)數(shù)的取值范圍.

【答案】(1)見(jiàn)解析 (2)

【解析】

(1)求出,分三種情況討論的范圍,在定義域內(nèi),分別令求得的范圍,可得函數(shù)增區(qū)間,求得的范圍,可得函數(shù)的減區(qū)間,根據(jù)單調(diào)性;(2)存在,使得對(duì)任意的都有恒成立,等價(jià)于,分別利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,并求出的最小值,解不等式即可得結(jié)果.

(1)因?yàn)?/span>的定義域?yàn)?/span> .

①當(dāng)時(shí),因?yàn)?/span>,,所以上為增函數(shù),

②當(dāng)時(shí),上為減函數(shù),在上為增函數(shù),

③當(dāng)時(shí),上為減函數(shù), .

(2)當(dāng)時(shí),若存在,使得對(duì)任意的都有恒成立,

.

由(1)知,當(dāng)時(shí), .

因?yàn)?/span>,令,則,

,得;令,得

所以上單調(diào)遞減,在上單調(diào)遞增,,所以上單調(diào)遞增.

所以,則

解得,又,,

所以,即實(shí)數(shù)的取值范圍是.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】過(guò)直線2x+y+4=0和圓x2+y2+2x4y+1=0的交點(diǎn),且面積最小的圓方程為(

A.(x+)2+(y+)2=B.(x)2+(y)2=

C.(x)2+(y+)2=D.(x+)2+(y)2=

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】四棱錐中,底面為直角梯形,,,,平面,,中點(diǎn).

(Ⅰ)求證:平面平面;

(Ⅱ)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),

1)當(dāng)時(shí),求的單調(diào)區(qū)間;

2)當(dāng),討論的零點(diǎn)個(gè)數(shù);

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知定義在R上的函數(shù)fx)滿足:對(duì)任意都有,且當(dāng)x>0時(shí),

1)求的值,并證明為奇函數(shù);

2)判斷函數(shù)的單調(diào)性,并證明;

3)若對(duì)任意恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某臍橙種植基地記錄了10棵臍橙樹(shù)在未使用新技術(shù)的年產(chǎn)量(單位:)和使用了新技術(shù)后的年產(chǎn)量的數(shù)據(jù)變化,得到表格如下:

未使用新技術(shù)的10棵臍橙樹(shù)的年產(chǎn)量

第一棵

第二棵

第三棵

第四棵

第五棵

第六棵

第七棵

第八棵

第九棵

第十棵

年產(chǎn)量

30

32

30

40

40

35

36

45

42

30

使用了新技術(shù)后的10棵臍橙樹(shù)的年產(chǎn)量

第一棵

第二棵

第三棵

第四棵

第五棵

第六棵

第七棵

第八棵

第九棵

第十棵

年產(chǎn)量

40

40

35

50

55

45

42

50

51

42

已知該基地共有20畝地,每畝地有50棵臍橙樹(shù).

(1)估計(jì)該基地使用了新技術(shù)后,平均1棵臍橙樹(shù)的產(chǎn)量;

(2)估計(jì)該基地使用了新技術(shù)后,臍橙年總產(chǎn)量比未使用新技術(shù)將增產(chǎn)多少?

(3)由于受市場(chǎng)影響,導(dǎo)致使用新技術(shù)后臍橙的售價(jià)由原來(lái)(未使用新技術(shù)時(shí))的每千克10元降為每千克9元,試估計(jì)該基地使用新技術(shù)后臍橙年總收入比原來(lái)增加的百分?jǐn)?shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列滿足, ,其中.

(1)設(shè),求證:數(shù)列是等差數(shù)列,并求出的通項(xiàng)公式;

(2)設(shè),數(shù)列的前項(xiàng)和為,是否存在正整數(shù),使得對(duì)于恒成立,若存在,求出的最小值,若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在橢圓外一直線上取 個(gè)不同的點(diǎn),過(guò)向橢圓作切線、,切點(diǎn)分別為、.記直線.

(1)若存在正整數(shù)、、,),使得點(diǎn)在直線上,證明:點(diǎn)在直線上;

(2)試求直線將橢圓分成的區(qū)域的個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在直角坐標(biāo)系中,曲線 為參數(shù), ),在以坐標(biāo)原點(diǎn)為極點(diǎn), 軸的非負(fù)半軸為極軸的極坐標(biāo)系中,曲線 .

(1)試將曲線化為直角坐標(biāo)系中的普通方程,并指出兩曲線有公共點(diǎn)時(shí)的取值范圍;

(2)當(dāng)時(shí),兩曲線相交于 兩點(diǎn),求.

查看答案和解析>>

同步練習(xí)冊(cè)答案