20.已知各項不為0的等差數(shù)列{an}滿足a3-a72+a11=0,數(shù)列{bn}是等比數(shù)列,且b7=a7,則b5•b7•b9等于(  )
A.1B.2C.4D.8

分析 由已知a3-a72+a11=0結合等差數(shù)列的性質(zhì)求得a7,得到b7,再由等比數(shù)列的性質(zhì)求得a5•b7•b9

解答 解:在等差數(shù)列{an}中,由a3-a72+a11=0,得$2{a}_{7}-{{a}_{7}}^{2}=0$,
∵an≠0,∴a7=2.
∴b7=a7=2,
在等比數(shù)列{bn}中,有b5•b7•b9 =${_{7}}^{3}={2}^{3}=8$.
故選:D.

點評 本題考查等差數(shù)列的通項公式,考查了等比數(shù)列的性質(zhì),是基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

10.已知圓C:(x-a)2+y2=1(a>0),過直線l:2x+2y+3=0上任意一點P作圓C的兩條切線PA,PB,切點分別為A,B,若∠APB為銳角,則a的取值范圍為($\frac{1}{2}$,+∞).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.噪聲污染已經(jīng)成為影響人們身體健康和生活質(zhì)量的嚴重問題,為了解強度D(單位:分貝)與聲音能量I(單位:W/cm2)之間的關系,將測量得到的聲音強度Di和聲音能量Ii(i=1,2…,10)數(shù)據(jù)作了初步處理,得到如表的散點圖及一些統(tǒng)計量的值.
 $\overline{I}$ $\overline{D}$ $\overline{W}$ $\underset{\stackrel{10}{∑}}{i=1}({I}_{i}-\overline{I})^{2}$ $\underset{\stackrel{10}{∑}}{i=1}({W}_{i}-\overline{W})^{2}$ $\underset{\stackrel{10}{∑}}{i=1}({I}_{i}-\overline{I})({D}_{i}-\overline{D})$ $\underset{\stackrel{10}{∑}}{i=1}({W}_{i}-\overline{W})({D}_{i}-\overline{D})$
1.04×10-1145.7-11.5 1.56×10-21 0.51 6.88×10-11 5.1
表中Wi=lgIi,$\overline{W}$=$\frac{1}{10}\underset{\stackrel{10}{∑}}{i=1}{W}_{i}$.
(Ⅰ)根據(jù)表中數(shù)據(jù),求聲音強度D關于聲音能量I的回歸方程D=a+blgI;
(Ⅱ)當聲音強度大于60分貝時屬于噪音,會產(chǎn)生噪聲污染,城市中某點P共受到兩個聲源的影響,這兩個聲源的聲音能量分別是I1和I2,且$\frac{1}{{I}_{1}}$+$\frac{4}{{I}_{2}}$=1010,已知點P的聲音能量等于聲音能量I1與I2之和,請根據(jù)(Ⅰ)中的回歸方程,判斷P點是否受到噪聲污染的干擾,并說明理由.
附:對于一組數(shù)據(jù)(μ1,v1),(μ2,v2),…,(μn,vn),其回歸直線v=α+βμ的斜率和截距的最小二乘估計分別為:$\widehat{β}$=$\frac{\underset{\stackrel{n}{∑}}{i=1}({μ}_{i}-\overline{μ})({v}_{i}-\overline{v})}{\underset{\stackrel{n}{∑}}{i=1}({μ}_{i}-\overline{μ})^{2}}$,$\widehat{α}$=$\overline{v}-\widehat{β}\overline{μ}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.如果實數(shù)x,y滿足條件$\left\{\begin{array}{l}{x-y≥0}\\{2x+y-2≥0}\\{x-1≤0}\end{array}\right.$,則z=$\frac{1}{y-2x}$的最大值為-$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.如果實數(shù)x,y滿足條件$\left\{\begin{array}{l}{x-y≥0}\\{2x+y-2≥0}\\{x-1≤0}\end{array}\right.$,則z=y-2x的最小值為-2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.已知O為坐標原點,A,B,C是圓O上的三點,若$\overrightarrow{AO}$=$\frac{1}{2}$($\overrightarrow{AB}$+$\overrightarrow{AC}$),|$\overrightarrow{BC}$|=2,過點D(2,0)的直線l與圓O相切,則直線l的方程是x+$\sqrt{3}$y-2=0或x-$\sqrt{3}$y-2=0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{\sqrt{2}}{2}$,過焦點且垂直于x軸的直線被橢圓截得的弦長為$\sqrt{2}$.
(Ⅰ)求橢圓C的方程;
(Ⅱ)若直線l1經(jīng)過橢圓C的上頂點P且與圓x2+y2=4交于A,B兩點,過點P作l1的垂線l2交橢圓C于另一點D,當△ABD的面積取得最大值時,求直線l1的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.設函數(shù)f(x)=2x+x|x-a|.
(1)當a=1時,解不等式f(x)≥2;
(2)當x∈[1,2]時,不等式f(x)≤1+2x2恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.已知函數(shù)f(x)=a-$\frac{1}{{{2^x}+1}}$.
(1)判斷f(x)的單調(diào)性并用定義法證明;
(2)確定a的值,使f(x)為奇函數(shù);
(3)當f(x)為奇函數(shù)時,求f(x)的值域.

查看答案和解析>>

同步練習冊答案