假設(shè)關(guān)于某設(shè)備的使用年限x和所支出的維修費(fèi)用y(萬元),有如下的統(tǒng)計資料:
x 2 3 4 5 6
y 2.2 3.8 5.5 6.5 7.0
若由資料可知y對x呈線性相關(guān)關(guān)系(
n
i=1
xi2=90,
n
i=1
xiyi=112.3)
(1)畫出x與y的散點(diǎn)圖;
(2)試求x與y線性回歸方程;
(3)估計使用年限為10年時,維修費(fèi)用大約是多少?
考點(diǎn):線性回歸方程,散點(diǎn)圖
專題:應(yīng)用題,概率與統(tǒng)計
分析:(1)利用描點(diǎn)法可得圖象;
(2)根據(jù)所給的數(shù)據(jù),做出變量x,y的平均數(shù),根據(jù)樣本中心點(diǎn)一定在線性回歸方程上,可得線性回歸方程.
(3)當(dāng)自變量為10時,代入線性回歸方程,求出維修費(fèi)用,這是一個預(yù)報值.
解答: 解:(1)散點(diǎn)圖如圖:

(2)
.
x
=
1
5
(2+3+4+5+6)=4,
.
y
=
1
5
(2.2+3.8+5.5+6.5+7)=5,
5
i=1
xiyi
=2×2.2+3×3.8+4×5.5+5×6.5+6×7=112.3,
5
i=1
xi2
=90
∴b=1.23,a=-b=5-1.23×4=0.08.
∴回歸直線方程為=1.23x+0.08.
(3)當(dāng)x=10時,=1.23×10+0.08=12.38(萬元),
即估計使用10年時維修費(fèi)約為12.38萬元.
點(diǎn)評:本題考查線性回歸方程的求解和應(yīng)用,是一個基礎(chǔ)題,解題的關(guān)鍵是正確應(yīng)用最小二乘法來求線性回歸方程的系數(shù).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2(sinx-cosx)cosx.
(1)求f(x)的最小正周期;
(2)求f(x)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓中心在原點(diǎn),對稱軸為坐標(biāo)軸,兩焦點(diǎn)為F1(3,0),F(xiàn)2(-3,0),且橢圓上一點(diǎn)P到兩焦點(diǎn)的距離之和為10,求橢圓的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在周長為48的直角三角形MPN中,∠MPN=90°,tan∠PMN=
3
4
,求以M、N為焦點(diǎn)且過點(diǎn)P的雙曲線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在長方體ABCD-A1B1C1D1中,E、H分別是棱A1B1,D1C1上的點(diǎn)(點(diǎn)E與B1不重合),且EH∥A1D1,過EH的平面與棱BB1,CC1相交,交點(diǎn)分別為F,G
(Ⅰ)證明:AD∥平面EFGH
(Ⅱ)設(shè)AB=2AA1=2a,在長方體ABCD-A1B1C1D1內(nèi)隨機(jī)選取一點(diǎn),記該點(diǎn)取自于幾何體A1ABFE-D1DCGH內(nèi)的概率為p,當(dāng)點(diǎn)E、F分別在棱A1B1,B1B上運(yùn)動且滿足EF=a時,求p的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某學(xué)員在一次射擊測試中射靶10次,命中環(huán)數(shù)是:7,8,7,9,5,4,9,10,7,4,則他命中環(huán)數(shù)的方差是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知隨機(jī)變量ξ服從二項分布ξ~B(6,
1
3
),則P(ξ=2)的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)x,y滿足
2x+y≥4
x-y≥1
y≥0
,則z=x+y的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=x(x-c)2在(1,3)上不單調(diào),則常數(shù)c的取值范圍是
 

查看答案和解析>>

同步練習(xí)冊答案