【題目】某部影片的盈利額(即影片的票房收入與固定成本之差)記為,觀影人數記為,其函數圖象如圖(1)所示.由于目前該片盈利未達到預期,相關人員提出了兩種調整方案,圖(2)、圖(3)中的實線分別為調整后與的函數圖象.
給出下列四種說法:
①圖(2)對應的方案是:提高票價,并提高成本;
②圖(2)對應的方案是:保持票價不變,并降低成本;
③圖(3)對應的方案是:提高票價,并保持成本不變;
④圖(3)對應的方案是:提高票價,并降低成本.
其中,正確的說法是____________.(填寫所有正確說法的編號)
科目:高中數學 來源: 題型:
【題目】已知函數部分圖象如圖所示.
(1)求函數的解析式及的單調遞增區(qū)間;
(2)把函數圖象上點的橫坐標擴大到原來的2倍(縱坐標不變),再向左平移個單位,得到函數的圖象,求關于x的方程在上所有的實數根之和.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數.
(1)判斷函數的奇偶性,并說明理由;
(2)若對于任意的恒成立,求滿足條件的實數m的最小值M .
(3)對于(2)中的M,正數a,b滿足,證明: .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某中學為研究學生的身體素質與課外體育鍛煉時間的關系,對該校200名學生的課外體育鍛煉平均每天運動的時間(單位:分鐘)進行調查,將收集的數據分成,,,,,六組,并作出頻率分布直方圖(如圖),將日均課外體育鍛煉時間不低于40分鐘的學生評價為“課外體育達標”.
(1)請根據直方圖中的數據填寫下面的2×2列聯(lián)表,并通過計算判斷是否能在犯錯誤的概率不超過0.01的前提下認為“課外體育達標”與性別有關?
課外體育不達標 | 課外體育達標 | 合計 | |
男 | 60 | ||
女 | 110 | ||
合計 |
(2)現(xiàn)按照“課外體育達標”與“課外體育不達標”進行分層抽樣,抽取8人,再從這8名學生中隨機抽取3人參加體育知識問卷調查,記“課外體育不達標”的人數為X,求X的分布列和數學期望.參考公式:
P(K2≥k0) | 0.15 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 2.072 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】底面為菱形的直棱柱
中,
分別為棱
的中點.
(1)在圖中作一個平面
,使得
,且平面
.(不必給出證明過程,只要求作出
與直棱柱
的截面).
(2)若
,求平面
與平面
的距離
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的左焦點為,過點的直線交橢圓于兩點,為坐標原點.
(1)若的斜率為,為的中點,且的斜率為,求橢圓的方程;
(2)連結并延長,交橢圓于點,若橢圓的長半軸長是大于的給定常數,求的面積的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】下面推理過程中使用了類比推理方法,其中推理正確的個數是
①“數軸上兩點間距離公式為,平面上兩點間距離公式為”,類比推出“空間內兩點間的距離公式為“;
②“代數運算中的完全平方公式”類比推出“向量中的運算仍成立“;
③“平面內兩不重合的直線不平行就相交”類比到空間“空間內兩不重合的直線不平行就相交“也成立;
④“圓上點處的切線方程為”,類比推出“橢圓 上點處的切線方程為”.
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com