精英家教網 > 高中數學 > 題目詳情

【題目】某部影片的盈利額(即影片的票房收入與固定成本之差)記為,觀影人數記為,其函數圖象如圖(1)所示.由于目前該片盈利未達到預期,相關人員提出了兩種調整方案,圖(2)、圖(3)中的實線分別為調整后的函數圖象.

給出下列四種說法:

①圖(2)對應的方案是:提高票價,并提高成本;

②圖(2)對應的方案是:保持票價不變,并降低成本;

③圖(3)對應的方案是:提高票價,并保持成本不變;

④圖(3)對應的方案是:提高票價,并降低成本.

其中,正確的說法是____________.(填寫所有正確說法的編號)

【答案】②③

【解析】

根據圖象可知盈利額與觀影人數成一次函數關系,再分別根據(2)(3)的圖象進行分析即可得出答案.

解:由圖象(1)可設盈利額與觀影人數的函數為,

,為票價,

,,為固定成本,

由圖象(2),直線向上平移,

不變,即票價不變,

變大,變小,成本減小.

故①錯誤,②正確;

由圖象(3),直線與軸的交點不變,直線斜率變大,

變大,即提高票價,

不變,不變,成本不變.

故③正確,④錯誤;

故答案為:②③

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知函數部分圖象如圖所示.

1)求函數的解析式及的單調遞增區(qū)間;

2)把函數圖象上點的橫坐標擴大到原來的2倍(縱坐標不變),再向左平移個單位,得到函數的圖象,求關于x的方程上所有的實數根之和.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數.

(1)判斷函數的奇偶性,并說明理由;

(2)若對于任意的恒成立,求滿足條件的實數m的最小值M .

(3)對于(2)中的M,正數a,b滿足,證明: .

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數

1)求上的最小值;

2)若,當有兩個極值點時,總有,求此時實數的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某中學為研究學生的身體素質與課外體育鍛煉時間的關系,對該校200名學生的課外體育鍛煉平均每天運動的時間(單位:分鐘)進行調查,將收集的數據分成,,,,六組,并作出頻率分布直方圖(如圖),將日均課外體育鍛煉時間不低于40分鐘的學生評價為課外體育達標

(1)請根據直方圖中的數據填寫下面的2×2列聯(lián)表,并通過計算判斷是否能在犯錯誤的概率不超過0.01的前提下認為課外體育達標與性別有關?

課外體育不達標

課外體育達標

合計

60

110

合計

(2)現(xiàn)按照課外體育達標課外體育不達標進行分層抽樣,抽取8人,再從這8名學生中隨機抽取3人參加體育知識問卷調查,記課外體育不達標的人數為X,求X的分布列和數學期望.參考公式:

P(K2≥k0)

0.15

0.05

0.025

0.010

0.005

0.001

k0

2.072

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】底面為菱形的直棱柱

中,

分別為棱

的中點.

(1)在圖中作一個平面

,使得

,且平面

.(不必給出證明過程,只要求作出

與直棱柱

的截面).

(2)若

,求平面

與平面

的距離

.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓的左焦點為,過點的直線交橢圓于兩點,為坐標原點.

(1)若的斜率為的中點,且的斜率為,求橢圓的方程;

(2)連結并延長,交橢圓于點,若橢圓的長半軸長是大于的給定常數,求的面積的最大值

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,四棱錐的底面是邊長為1的正方形,垂直于底面,.

1)求平面與平面所成二面角的大;

2)設棱的中點為,求異面直線所成角的大小.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】下面推理過程中使用了類比推理方法,其中推理正確的個數是

①“數軸上兩點間距離公式為平面上兩點間距離公式為”,類比推出“空間內兩點間的距離公式為“;

②“代數運算中的完全平方公式”類比推出“向量中的運算仍成立“;

③“平面內兩不重合的直線不平行就相交”類比到空間“空間內兩不重合的直線不平行就相交“也成立;

④“圓上點處的切線方程為”,類比推出“橢圓 上點處的切線方程為”.

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

同步練習冊答案