14.設(shè)a,b∈R,且a≠2,定義在區(qū)間(-b,b)內(nèi)的函數(shù)$f(x)={lg^{\frac{1+ax}{1+2x}}}$是奇函數(shù)
(1)求實(shí)數(shù)b的取值范圍;
(2)判斷函數(shù)f(x)的單調(diào)性,并證明.

分析 (1)利用奇函數(shù)的定義,求出a,可得函數(shù)的解析式,即可求實(shí)數(shù)b的取值范圍;
(2)利用導(dǎo)數(shù)的方法,判斷函數(shù)f(x)的單調(diào)性.

解答 解:(1)∵定義在區(qū)間(-b,b)內(nèi)的函數(shù)$f(x)={lg^{\frac{1+ax}{1+2x}}}$是奇函數(shù),
∴f(-x)=-f(x),化簡(jiǎn)可得a2x2=4x2,
∵a≠2,∴a=-2,
∴f(x)=lg$\frac{1-2x}{1+2x}$,
由$\frac{1-2x}{1+2x}$>0,可得-$\frac{1}{2}<x<\frac{1}{2}$,
∴-$\frac{1}{2}≤-b<b≤\frac{1}{2}$,
∴b∈(0,$\frac{1}{2}$];
(2)y=$\frac{1-2x}{1+2x}$,則y′=$\frac{-2(1+2x)-2(1-2x)}{(1+2x)^{2}}$=$\frac{-4}{(1+2x)^{2}}$<0,
∴函數(shù)f(x)在區(qū)間(-b,b)內(nèi)單調(diào)遞減.

點(diǎn)評(píng) 本題考查函數(shù)的奇偶性、單調(diào)性,考查學(xué)生的計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.已知集合A={1,2,3,4},B={x|-2≤3x-2≤10,x∈R},則A∩B=( 。
A.{1}B.{1,2,3,4}C.{1,3}D.{1,4}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.在正方體ABCD-A1B1C1D1中,異面直線AD1,B1C所成的角的度數(shù)為90°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.冪函數(shù)y=f(x)經(jīng)過(guò)點(diǎn)(4,2),則f(x)是( 。
A.偶函數(shù),且在(0,+∞).上是增函數(shù)
B.偶函數(shù),且在(0,+∞)上是減函數(shù)
C.奇函數(shù),且在(0,+∞)上是減函數(shù)
D.非奇非偶函數(shù),且在(0,+∞)上是增函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.化簡(jiǎn):$\frac{5}{6}{a^{\frac{1}{2}}}{b^{-\frac{1}{3}}}×(-3{a^{-\frac{1}{6}}}{b^{-1}})÷{(4{a^{\frac{2}{3}}}{b^{-3}})^{\frac{1}{2}}}$=-$\frac{5}{4}$b${\;}^{\frac{1}{6}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.已知a>0,b>0,且$\frac{1}{a}$+$\frac{1}$=1,則a+2b的最小值是(  )
A.3-2$\sqrt{2}$B.3+2$\sqrt{2}$C.2$\sqrt{2}$D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.在邊長(zhǎng)為3的等邊三角形ABC中,$\overrightarrow{DC}$=2$\overrightarrow{BD}$,2$\overrightarrow{BC}$+$\overrightarrow{BA}$=3$\overrightarrow{BE}$,則|$\overrightarrow{DE}$|=$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知sinα=-$\frac{\sqrt{5}}{5}$,tan(α+β)=-3,π<α<$\frac{3π}{2}$,0<β<π.
(Ⅰ)求tanβ;
(Ⅱ)求2α+β的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.已知函數(shù)y=f(x),x∈R,對(duì)于任意的x,y∈R,f(x+y)=f(x)+f(y),若f(1)=$\frac{1}{2}$,則f(-2016)=-1008.

查看答案和解析>>

同步練習(xí)冊(cè)答案