已知函數(shù).        
(Ⅰ)求的最小值;
(Ⅱ)若對(duì)所有都有,求實(shí)數(shù)的取值范圍.
(1)當(dāng)時(shí),取得最小值. (2)的取值范圍是

試題分析:(1)的定義域?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824014003696482.png" style="vertical-align:middle;" />,  1分  
的導(dǎo)數(shù).    2分
,解得;令,解得.
從而單調(diào)遞減,在單調(diào)遞增.    4分
所以,當(dāng)時(shí),取得最小值.         6分
(2)依題意,得上恒成立,
即不等式對(duì)于恒成立 .   
,  則.   8分
當(dāng)時(shí),因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240140041331080.png" style="vertical-align:middle;" />,  
上的增函數(shù),  所以 的最小值是,  10分
所以的取值范圍是.    12分
點(diǎn)評(píng):中檔題,本題屬于導(dǎo)數(shù)應(yīng)用中的常見問題,通過研究函數(shù)的單調(diào)性,明確最值情況。涉及不等式恒成立問題,往往通過構(gòu)造函數(shù),研究函數(shù)的最值,得到確定參數(shù)(范圍)的目的。對(duì)數(shù)函數(shù)要注意其真數(shù)大于0.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

下列求導(dǎo)正確的是
A.(x+)’=1+
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù),當(dāng)時(shí),取得極大值;當(dāng)時(shí),取得極小值.
、的值;
處的切線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù) , .  
(Ⅰ)當(dāng)時(shí),求曲線在點(diǎn)處的切線方程;
(Ⅱ)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;
(Ⅲ)當(dāng)時(shí),函數(shù)上的最大值為,若存在,使得成立,求實(shí)數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知.
(Ⅰ)時(shí),求證內(nèi)是減函數(shù);
(Ⅱ)若內(nèi)有且只有一個(gè)極值點(diǎn),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

下列命題:①若存在導(dǎo)函數(shù),則;②若函數(shù),則;③若函數(shù),則;④若三次函數(shù),則“”是“f(x)有極值點(diǎn)”的充要條件;⑤函數(shù)的單調(diào)遞增區(qū)間是.其中真命題為____.(填序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù),其中為實(shí)數(shù).
(Ⅰ) 若處取得的極值為,求的值;
(Ⅱ)若在區(qū)間上為減函數(shù),且,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù) 
(Ⅰ)若曲線y=f(x)在(1,f(1))處的切線與直線x+y+1=0平行,求a的值;
(Ⅱ)若a>0,函數(shù)y=f(x)在區(qū)間(a,a 2-3)上存在極值,求a的取值范圍;
(Ⅲ)若a>2,求證:函數(shù)y=f(x)在(0,2)上恰有一個(gè)零點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

點(diǎn)是曲線上任意一點(diǎn), 則點(diǎn)到直線的距離的最小值是( 。
A.1B. C.2D.

查看答案和解析>>

同步練習(xí)冊(cè)答案