【題目】一商場對每天進(jìn)店人數(shù)和商品銷售件數(shù)進(jìn)行了統(tǒng)計對比,得到如下表格:
(1)在給定的坐標(biāo)系中畫出表中數(shù)據(jù)的散點圖,并由散點圖判斷銷售件數(shù)與進(jìn)店人數(shù)是否線性相關(guān)?(給出判斷即可,不必說明理由)
(2)建立關(guān)于的回歸方程(系數(shù)精確到0.01),預(yù)測進(jìn)店人數(shù)為80時,商品銷售的件數(shù)(結(jié)果保留整數(shù)).
參考數(shù)據(jù):,,,,,.
參考公式:回歸方程,其中,.
【答案】(1)見解析; (2)58件.
【解析】
(1)根據(jù)所給的這一組數(shù)據(jù),得到7個點的坐標(biāo),把這幾個點的坐標(biāo)在直角坐標(biāo)系中描出對應(yīng)的點,得到散點圖,由散點圖可以判斷,商品件數(shù)與進(jìn)店人數(shù)線性相關(guān).
(2)根據(jù)所給的數(shù)據(jù),做出x,y的平均數(shù),即得到這組數(shù)據(jù)的樣本中心點,根據(jù)最小二乘法做出線性回歸方程的系數(shù),寫出線性回歸方程.利用線性回歸方程,把x的值代入方程,預(yù)報出對應(yīng)的y的值
(1)圖形
由散點圖可以判斷,商品件數(shù)與進(jìn)店人數(shù)線性相關(guān)
(2)因為,,,
,,,
所以,
所以回歸方程,
當(dāng)時,(件)
所以預(yù)測進(jìn)店人數(shù)為80時,商品銷售的件數(shù)為58件.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)甲、乙兩位同學(xué)上學(xué)期間,每天7:30之前到校的概率均為.假定甲、乙兩位同學(xué)到校情況互不影響,且任一同學(xué)每天到校情況相互獨立.
(Ⅰ)用表示甲同學(xué)上學(xué)期間的三天中7:30之前到校的天數(shù),求隨機變量的分布列和數(shù)學(xué)期望;
(Ⅱ)設(shè)為事件“上學(xué)期間的三天中,甲同學(xué)在7:30之前到校的天數(shù)比乙同學(xué)在7:30之前到校的天數(shù)恰好多2”,求事件發(fā)生的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2019年,我國施行個人所得稅專項附加扣除辦法,涉及子女教育、繼續(xù)教育、大病醫(yī)療、住房貸款利息或者住房租金、贍養(yǎng)老人等六項專項附加扣除.某單位老、中、青員工分別有人,現(xiàn)采用分層抽樣的方法,從該單位上述員工中抽取人調(diào)查專項附加扣除的享受情況.
(Ⅰ)應(yīng)從老、中、青員工中分別抽取多少人?
(Ⅱ)抽取的25人中,享受至少兩項專項附加扣除的員工有6人,分別記為.享受情況如右表,其中“”表示享受,“×”表示不享受.現(xiàn)從這6人中隨機抽取2人接受采訪.
員工 項目 | A | B | C | D | E | F |
子女教育 | ○ | ○ | × | ○ | × | ○ |
繼續(xù)教育 | × | × | ○ | × | ○ | ○ |
大病醫(yī)療 | × | × | × | ○ | × | × |
住房貸款利息 | ○ | ○ | × | × | ○ | ○ |
住房租金 | × | × | ○ | × | × | × |
贍養(yǎng)老人 | ○ | ○ | × | × | × | ○ |
(i)試用所給字母列舉出所有可能的抽取結(jié)果;
(ii)設(shè)為事件“抽取的2人享受的專項附加扣除至少有一項相同”,求事件發(fā)生的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐P-ABCD中,底面ABCD為矩形,PA⊥平面ABCD,E為PD的中點.
(1) 證明:PB∥平面AEC
(2) 設(shè)二面角D-AE-C為60°,AP=1,AD=,求三棱錐E-ACD的體積
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù).
(1)當(dāng)時,求函數(shù)的單調(diào)區(qū)間;
(2),恒成立,求最大的正整數(shù)的值;
(3),且,證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨著改革開放的不斷深入,祖國不斷富強,人民的生活水平逐步提高,為了進(jìn)一步改善民生,2019年1月1日起我國實施了個人所得稅的新政策,其政策的主要內(nèi)容包括:(1)個稅起征點為5000元;(2)每月應(yīng)納稅所得額(含稅)收入個稅起征點專項附加扣除;(3)專項附加扣除包括①贍養(yǎng)老人費用②子女教育費用③繼續(xù)教育費用④大病醫(yī)療費用……等.其中前兩項的扣除標(biāo)準(zhǔn)為:①贍養(yǎng)老人費用:每月扣除2000元②子女教育費用:每個子女每月扣除1000元.
新個稅政策的稅率表部分內(nèi)容如下:
級數(shù) | 一級 | 二級 | 三級 | 四級 | … |
每月應(yīng)納稅所得額(含稅) | 不超過3000元的部分 | 超過3000元至12000元的部分 | 超過12000元至25000元的部分 | 超過25000元至35000元的部分 | … |
稅率(%) | 3 | 10 | 20 | 25 | … |
(1)現(xiàn)有李某月收入19600元,膝下有一名子女,需要贍養(yǎng)老人,(除此之外,無其它專項附加扣除)請問李某月應(yīng)繳納的個稅金額為多少?
(2)現(xiàn)收集了某城市50名年齡在40歲到50歲之間的公司白領(lǐng)的相關(guān)資料,通過整理資料可知,有一個孩子的有40人,沒有孩子的有10人,有一個孩子的人中有30人需要贍養(yǎng)老人,沒有孩子的人中有5人需要贍養(yǎng)老人,并且他們均不符合其它專項扣除(受統(tǒng)計的50人中,任何兩人均不在一個家庭).若他們的月收入均為20000元,試求在新個稅政策下這50名公司白領(lǐng)的月平均繳納個稅金額為多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知圓的方程為,圓的方程為,動圓與圓內(nèi)切且與圓外切.
(1)求動圓圓心的軌跡的方程;
(2)已知與為平面內(nèi)的兩個定點,過點的直線與軌跡交于,兩點,求四邊形面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】橢圓的離心率是,過點做斜率為的直線,橢圓與直線交于兩點,當(dāng)直線垂直于軸時.
(Ⅰ)求橢圓的方程;
(Ⅱ)當(dāng)變化時,在軸上是否存在點,使得是以為底的等腰三角形,若存在求出的取值范圍,若不存在說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com