【題目】已知雙曲線C: -=1 (a>0,b>0)的左、右焦點分別為F1,F2,點P為雙曲線右支上一點,若|PF1|2=8a|PF2|,則雙曲線C的離心率的取值范圍為( )
A. (1,3] B. [3,+∞)
C. (0,3) D. (0,3]
科目:高中數(shù)學 來源: 題型:
【題目】下列是關于復數(shù)的類比推理:
①復數(shù)的加減法運算可以類比多項式的加減法運算法則;
②由實數(shù)絕對值的性質(zhì)|x|2=x2類比得到復數(shù)z的性質(zhì)|z|2=z2;
③已知a,b∈R,若a-b>0,則a>b類比得已知z1,z2∈C,若z1-z2>0,則z1>z2;
④由向量加法的幾何意義可以類比得到復數(shù)加法的幾何意義.
其中推理結論正確的是__________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】鐵人中學高二學年某學生對其親屬30人飲食習慣進行了一次調(diào)查,并用如圖所示的莖葉圖表示30人的飲食指數(shù).(說明:圖中飲食指數(shù)低于70的人,飲食以蔬菜為主;飲食指數(shù)高于70的人,飲食以肉類為主.)
(Ⅰ)根據(jù)莖葉圖,幫助這位學生說明其親屬30人的飲食習慣;
(Ⅱ)根據(jù)以上數(shù)據(jù)完成下列的列聯(lián)表:
主食蔬菜 | 主食肉類 | 合計 | |
50歲以下人數(shù) | |||
50歲以上人數(shù) | |||
合計人數(shù) |
(Ⅲ)能否在犯錯誤的概率不超過0.01的前提下認為其親屬的飲食習慣與年齡有關系?
附:.
0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】學校或班級舉行活動,通常需要張貼海報進行宣傳.現(xiàn)讓你設計一張如圖所示的豎向張貼的海報,要求版心面積為128 dm2,上、下兩邊各空2 dm,左、右兩邊各空1 dm.如何設計海報的尺寸,才能使四周空白面積最?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),其中為自然對數(shù)的底數(shù).
(1)若函數(shù)在區(qū)間上是單調(diào)函數(shù),試求實數(shù)的取值范圍;
(2)已知函數(shù),且,若函數(shù)在區(qū)間上恰有3個零點,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某位同學進行寒假社會實踐活動,為了對白天平均氣溫與某奶茶店的某種飲料銷量之間的關系進行分析研究,他分別記錄了1月11日至1月15日的白天平均氣溫與該小賣部的這種飲料銷量(杯),得到如下數(shù)據(jù):
日期 | 1月11日 | 1月12日 | 1月13日 | 1月14日 | 1月15日 |
平均氣溫 | 9 | 10 | 12 | 11 | 8 |
銷量(杯) | 23 | 25 | 30 | 26 | 21 |
(1)若先從這五組數(shù)據(jù)中抽出2組,求抽出的2組數(shù)據(jù)恰好是相鄰2天數(shù)據(jù)的概率;
(2)請根據(jù)所給五組數(shù)據(jù),求出關于的線性回歸方程;
(3)根據(jù)(1)中所得的線性回歸方程,若天氣預報1月16日的白天平均氣溫,請預測該奶茶店這種飲料的銷量.
(參考公式:,)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】針對國家提出的延遲退休方案,某機構進行了網(wǎng)上調(diào)查,所有參與調(diào)查的人中,持“支持”、“保留”和“不支持”態(tài)度的人數(shù)如下表所示:
支持 | 保留 | 不支持 | |
歲以下 | |||
歲以上(含歲) |
(1)在所有參與調(diào)查的人中,用分層抽樣的方法抽取個人,已知從持“不支持”態(tài)度的人中抽取了人,求的值;
(2)在持“不支持”態(tài)度的人中,用分層抽樣的方法抽取人看成一個總體,從這人中任意選取人,求歲以下人數(shù)的分布列和期望;
(3)在接受調(diào)查的人中,有人給這項活動打出的分數(shù)如下: , , , , , , , , , ,把這個人打出的分數(shù)看作一個總體,從中任取一個數(shù),求該數(shù)與總體平均數(shù)之差的絕對值超過概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com