4.從4名男同學和3名女同學組成的團隊中選出3人,男女都有的情況有30種.

分析 根據(jù)題意,分析可得:若取出的選出的3人男女都有,有2種情況,即選出的3人為2男1女或1男2女,分2種情況進行分類討論,由加法原理計算可得答案.

解答 解:根據(jù)題意,按選出3人中女生的數(shù)目分2種情況討論:
①、選出3人中有1名女生,即選出的3人為2男1女,有C42C31=18種選法,
②、選出3人中有2名女生,即選出的3人為1男2女,有C41C32=12種選法,
則選出的3人男女都有的情況有18+12=30種;
故答案為:30.

點評 本題考查排列、組合的應用,注意依據(jù)題意要求,進行分類討論.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

14.在正方體ABCD-A1B1C1D1中,異面直線B1D1與AC所成角大小是90°.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.在直角坐標系xOy中,直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=1+\frac{1}{2}t}\\{y=\frac{\sqrt{3}}{2}t}\end{array}\right.$(t為參數(shù)),在以坐標原點O為極點,x軸的正半軸為極軸的極坐標系中,曲線C的極坐標方程為ρ=2$\sqrt{2}$cos($\frac{π}{4}$+θ).
(I)求直線l的普通方程和曲線C的直角坐標方程;
(Ⅱ)設(shè)直線l與曲線C相交于M,N兩點,求|MN|的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.設(shè)兩向量$\overrightarrow{e_1}$,$\overrightarrow{e_2}$滿足$|\overrightarrow{e_1}|=2$,$|\overrightarrow{e_2}|=1$,$\overrightarrow{e_1}$,$\overrightarrow{e_2}$的夾角為60°,$\vec a=2$$\overrightarrow{e_1}$+$\overrightarrow{e_2}$$\vec b=\overrightarrow{e_1}+2\overrightarrow{e_2}$,則$\vec a$在$\vec b$上的投影為( 。
A.$\frac{{5\sqrt{3}}}{2}$B.$\frac{{5\sqrt{21}}}{7}$C.$\frac{{5\sqrt{7}}}{7}$D.$\frac{{5\sqrt{2}}}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.求函數(shù)$f(x)=\frac{{-2{x^2}+x-3}}{x},\;(x>0)$的最大值,以及此時x的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.在平面直角坐標系中,直線l的參數(shù)方程為$\left\{{\begin{array}{l}{x=1+\frac{1}{2}t}\\{y=\frac{{\sqrt{3}}}{2}t}\end{array}}\right.$(t為參數(shù)),以坐標原點為極點,x軸正半軸為極軸建立極坐標系,曲線C的極坐標方程為3ρ2cos2θ+4ρ2sin2θ=12.
(Ⅰ)求曲線C的直角坐標方程;
(Ⅱ)已知直線l與曲線C交于A,B兩點,試求|AB|.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.在△ABC中,角A、B、C的對邊分別為a,b,c,且$\frac{c}{cosC}$=$\frac{a+b}{cosA+cosB}$.
(1)求角A的大;
(2)若△ABC的外接圓直徑為1,求a2+b2的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.在等差數(shù)列{an}中,a2=4,a4+a7=15. 
(1)求數(shù)列{an}的通項公式;
(2)設(shè)bn=2${\;}^{{a}_{n}-2}$+2n,求b1+b2+b3+…+b9的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.已知數(shù)列{an}滿足4an=an-1-3(n≥2且n∈N*),且a1=-$\frac{3}{4}$,設(shè)bn$+2=3lo{g}_{\frac{1}{4}}$(an+1),n∈N*,數(shù)列{cn}滿足cn=(an+1)bn
(1)求證{an+1}是等比數(shù)列并求出數(shù)列{an}的通項公式;
(2)求數(shù)列{cn}的前n項和Sn
(3)對于任意n∈N*,cn≤m2-m-$\frac{1}{2}$恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

同步練習冊答案