已知常數(shù)a>0,函數(shù)
(1)求f(x)的單調(diào)遞增區(qū)間;
(2)若0<a≤2,求f(x)在區(qū)間[1,2]上的最小值g(a);
(3)是否存在常數(shù)t,使對于任意時,f(x)f(2t-x)+f2(t)≥[f(x)+f(2t-x)]f(t)恒成立,若存在,求出t的值;若不存在,說明理由.
【答案】分析:(1)分段確定函數(shù)的單調(diào)遞增區(qū)間,即可得到函數(shù)f(x)的單調(diào)遞增區(qū)間;
(2)根據(jù)函數(shù)的通項,分類討論,確定函數(shù)的單調(diào)性,從而可得函數(shù)的最小值;
(3)由f(x)f(2t-x)+f2(t)≥[f(x)+f(2t-x)]f(t),可得[f(t)-f(x)][f(t)-f(2t-x)]≥0,從而可得t為極小值點,或t為極大值點,根據(jù),即可求得結(jié)論.
解答:解:(1)當時,為增函數(shù). …(1分)
時,f'(x)=3x2
令f'(x)>0,得x>a或x<-a.…(3分)
∴f(x)的增區(qū)間為(-∞,-a),和(a,+∞).…(4分)
(2)函數(shù)的圖象如圖,由圖可知,

①當1<a<2時,,f(x)在區(qū)間[1,a]上遞減,在[a,2]上遞增,最小值為f(a)=4a3;…(6分)
②當0<a≤1時,f(x)在區(qū)間[1,2]為增函數(shù),最小值為f(1)=1+3a4;…(8分)
③當a=2時,f(x)在區(qū)間[1,2]為減函數(shù),最小值為f(a)=4a3; …(9分)
綜上,f(x)最小值.  …(10分)
(3)由f(x)f(2t-x)+f2(t)≥[f(x)+f(2t-x)]f(t),
可得[f(t)-f(x)][f(t)-f(2t-x)]≥0,…(12分)
成立,所以t為極小值點,或t為極大值點.
時,f(x)沒有極大值,所以t為極小值點,即t=a…(16分)
(若只給出t=a,不說明理由,得1分)
點評:本題考查函數(shù)的單調(diào)性,考查函數(shù)的最值,考查分類討論的數(shù)學思想,正確理解題意是關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知常數(shù)a>0,函數(shù)f(x)=
x3+
3a4
x
,|x|≥
a
2
49
4
a2x,|x|<
a
2

(1)求f(x)的單調(diào)遞增區(qū)間;
(2)若0<a≤2,求f(x)在區(qū)間[1,2]上的最小值g(a);
(3)是否存在常數(shù)t,使對于任意x∈(
a
2
,2t-
a
2
)(t>
a
2
)
時,f(x)f(2t-x)+f2(t)≥[f(x)+f(2t-x)]f(t)恒成立,若存在,求出t的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知常數(shù)a>0,函數(shù)f(x)=
x3+
3a4
x
,|x|≥
a
2
49
4
a2x,|x|<
a
2

(1)求f(x)的單調(diào)遞增區(qū)間;
(2)若0<a≤2,求f(x)在區(qū)間[1,2]上的最小值g(a);
(3)是否存在常數(shù)t,使對于任意x∈(
a
2
,2t-
a
2
)(t>
a
2
)
時,f(x)f(2t-x)+f2(t)≥[f(x)+f(2t-x)]f(t)恒成立,若存在,求出t的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年江蘇省泰州市姜堰市高三(上)期中數(shù)學試卷(解析版) 題型:解答題

已知常數(shù)a>0,函數(shù)
(1)求f(x)的單調(diào)遞增區(qū)間;
(2)若0<a≤2,求f(x)在區(qū)間[1,2]上的最小值g(a);
(3)是否存在常數(shù)t,使對于任意時,f(x)f(2t-x)+f2(t)≥[f(x)+f(2t-x)]f(t)恒成立,若存在,求出t的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年江蘇省泰州市姜堰市高三(上)期中數(shù)學試卷(解析版) 題型:解答題

已知常數(shù)a>0,函數(shù)
(1)求f(x)的單調(diào)遞增區(qū)間;
(2)若0<a≤2,求f(x)在區(qū)間[1,2]上的最小值g(a);
(3)是否存在常數(shù)t,使對于任意時,f(x)f(2t-x)+f2(t)≥[f(x)+f(2t-x)]f(t)恒成立,若存在,求出t的值;若不存在,說明理由.

查看答案和解析>>

同步練習冊答案