精英家教網 > 高中數學 > 題目詳情
直線l:y=ax+1與雙曲線C:3x2-y2=1相交于A,B兩點.
(1)a為何值時,以AB為直徑的圓過原點;
(2)是否存在這樣的實數a,使A,B關于直線x-2y=0對稱,若存在,求a的值,若不存在,說明理由.
(1)聯立方程ax+1=y與3x2-y2=1,消去y得:(3-a2)x2-2ax-2=0(*)
又直線與雙曲線相交于A,B兩點,3-a2≠0,所以a≠±
3
,∴△>0?-
6
<a<
6

又依題OA⊥OB,令A,B兩點坐標分別為(x1,y1),(x2,y2),則y1y2=-x1x2
且y1y2=(ax1+1)(ax2+1)=a2x1x2+a(x1+x2)+1=-x1x2?x1x2(1+a2)+a(x1+x2)+1=0,而由方程(*)知:x1+x2=
2a
3-a2
,x1x2=
2
a2-3
代入上式得-
2(a1+1)
3-a2
+
2a2
3-a2
+1=0?a2=1?a=±1
.滿足條件.
(2)假設這樣的點A,B存在,則l:y=ax+1斜率a=-2.又AB中點(
x1+x2
2
,
y1+y2
2
)
y=
1
2
x
上,則y1+y2=
1
2
(x1+x2)
,
又y1+y2=a(x1+x2)+2,
代入上式知
2a(x1+x2)+4=x1+x2
x1+x2=
2a
3-a2
?a=6
這與a=-2矛盾.
故這樣的實數a不存在.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

直線l:y=ax+1與雙曲線C:3x2-y2=1相交于A,B兩點.
(1)a為何值時,以AB為直徑的圓過原點;
(2)是否存在這樣的實數a,使A,B關于直線x-2y=0對稱,若存在,求a的值,若不存在,說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

對于函數f(x)=a x2+(b+1)x+b-2(a≠0),若存在實數 x0,使f( x0)=x0成立,則稱 x0為f(x)的不動點
(1)當a=2,b=-2時,求f(x)的不動點;
(2)若對于任何實數b,函數f(x)恒有兩個相異的不動點,求實數a的取值范圍;
(3)在(2)的條件下判斷直線L:y=ax+1與圓(x-2)2+(y+2)2=4 a2+4的位置關系.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知直線l:y=ax+1-a(a∈R).若存在實數a使得一條曲線與直線l有兩個不同的交點,且以這兩個交點為端點的線段長度恰好等于|a|,則稱此曲線為直線l的“絕對曲線”.下面給出四條曲線方程:①y=-2|x-1|;②y=x2;③(x-1)2+(y-1)2=1;④x2+3y2=4;則其中直線l的“絕對曲線”有( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

已知直線l:y=ax+1與雙曲線C:3x2-y2=1相交于A、B兩點.
(1)求實數a的取值范圍;
(2)當實數a取何值時,以線段AB為直徑的圓經過坐標原點.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知直線l:y=ax+1-a(a∈R),若存在實數a使得一條曲線與直線l有兩個不同的交點,且以這兩個交點為端點的線段的長度恰好等于|a|,則稱此曲線為直線l的“絕對曲線”.下面給出的三條曲線方程:
①y=-2|x-1|;
②(x-1)2+(y-1)2=1;
③x2+3y2=4.
其中直線l的“絕對曲線”有
 
.(填寫全部正確選項的序號)

查看答案和解析>>

同步練習冊答案