若不等式對(duì)一切大于1的自然數(shù)n都成立,求自然數(shù)m的最大值.

答案:
解析:

  解:設(shè),則

  

  

  ∴n=2時(shí),f(n)有最小值

  由,得m<14

  ∴m的最大值為13


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知等差數(shù)列{an}滿足:a1+a2n-1=2n,n∈N*,設(shè)Sn是數(shù)列{
1an
}的前n項(xiàng)和,記f(n)=S2n-Sn
(1)求an
(2)比較f(n+1)與f(n)的大;
(3)(理)若不等式log2t+log2x+log2(2-x)-log2(12f(n))-3<0對(duì)一切大于1的自然數(shù)n和所有使不等式有意義的實(shí)數(shù)x都成立,求實(shí)數(shù)t的取值范圍.
(文)如果函數(shù)g(x)=x2-3x-3-12f(n)對(duì)于一切大于1的自然數(shù)n,其函數(shù)值都小于零,求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(本小題滿分12分)數(shù)列的通項(xiàng)是關(guān)于的不等式的解集中整數(shù)的個(gè)數(shù),  (1)求數(shù)列的通項(xiàng)公式;  (2)是否存在實(shí)數(shù)使不等式對(duì)一切大于1的自然數(shù)恒成立,若存在試確定的取值范圍,否則說(shuō)明原因.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知等差數(shù)列{an}滿足:a1+a2n-1=2n,n∈N*,設(shè)Sn是數(shù)列{數(shù)學(xué)公式}的前n項(xiàng)和,記f(n)=S2n-Sn
(1)求an;
(2)比較f(n+1)與f(n)的大。
(3)(理)若不等式log2t+log2x+log2(2-x)-log2(12f(n))-3<0對(duì)一切大于1的自然數(shù)n和所有使不等式有意義的實(shí)數(shù)x都成立,求實(shí)數(shù)t的取值范圍.
(文)如果函數(shù)g(x)=x2-3x-3-12f(n)對(duì)于一切大于1的自然數(shù)n,其函數(shù)值都小于零,求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若數(shù)列{an}的通項(xiàng)是關(guān)于x的不等式x2-x<nx(n∈N*)的解集中整數(shù)的個(gè)數(shù)f(n)=

(1)求數(shù)列{an}的通項(xiàng)公式

(2)求證:對(duì)一切大于1的自然數(shù)n恒有<f(n)<1.

查看答案和解析>>

同步練習(xí)冊(cè)答案