【題目】已知函數(shù),
(1)當時,討論函數(shù)的單調(diào)性
(2)當時,,對任意,都有恒成立,求實數(shù)b的取值范圍.
【答案】(1)在單調(diào)遞增,在單調(diào)遞減;(2)
【解析】
(1)先求得定義域及函數(shù)的導函數(shù),求得函數(shù)極值點.再由,可判斷導函數(shù)的符號,即可判斷函數(shù)的單調(diào)區(qū)間.
(2)將代入,再代入可得解析式.由不等式恒成立,分離參數(shù)后構(gòu)造函數(shù).求其導函數(shù)可得.再構(gòu)造函數(shù),求得.可判斷出有唯一的零點,即在處取得最小值.進而結(jié)合不等式即可求得b的取值范圍.
(1)定義域為
由題知
則,
令解得
當,,
當,﹔當,;
函數(shù)在單調(diào)遞增,在單調(diào)遞減
(2)將代入,再代入中可得
由恒成立可得恒成立,
即恒成立,
設(shè),則,
,,
當時,,
在上單調(diào)遞增,且有,,
函數(shù)有唯一的零點,且 ,
當,,,單調(diào)遞減,
當,,,單調(diào)遞增,
是在定義域內(nèi)的最小值
,
得,,(*)
令,,
方程(*)等價為,,單調(diào)遞增,
等價為,,
,,易知單調(diào)遞增,,
是的唯一零點,
,,
的最小值,
恒成立
的范圍是
科目:高中數(shù)學 來源: 題型:
【題目】為弘揚中華民族優(yōu)秀傳統(tǒng)文化,樹立正確的價值導向,落實立德樹人根本任務(wù),某市組織30000名高中學生進行古典詩詞知識測試,根據(jù)男女學生人數(shù)比例,使用分層抽樣的方法從中隨機抽取100名學生,記錄他們的分數(shù),整理所得頻率分布直方圖如圖:
(Ⅰ)規(guī)定成績不低于60分為及格,不低于85分為優(yōu)秀,試估計此次測試的及格率及優(yōu)秀率;
(Ⅱ)試估計此次測試學生成績的中位數(shù);
(Ⅲ)已知樣本中有的男生分數(shù)不低于80分,且樣本中分數(shù)不低于80分的男女生人數(shù)相等,試估計參加本次測試30000名高中生中男生和女生的人數(shù).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在正方體中,是棱的中點,是側(cè)面內(nèi)的動點,且平面,則與平面所成角的正切值構(gòu)成的集合是( )
A.B.
C.D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的焦點在x軸上,一個頂點為,離心率為,過橢圓的右焦點F的直線l與坐標軸不垂直,且交橢圓于A,B兩點.
求橢圓的方程;
設(shè)點C是點A關(guān)于x軸的對稱點,在x軸上是否存在一個定點N,使得C,B,N三點共線?若存在,求出定點的坐標;若不存在,說明理由;
設(shè),是線段為坐標原點上的一個動點,且,求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(選修4-4:坐標系與參數(shù)方程)
已知圓的參數(shù)方程為(,為參數(shù)),將圓上所有點的橫坐標伸長到原來的倍,縱坐標不變得到曲線;以坐標原點為極點,以軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.
(1)求曲線的普通方程與曲線的直角坐標方程;
(2)設(shè)為曲線上的動點,求點與曲線上點的距離的最小值,并求此時點的坐標.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】2019年7月,中國良渚古城遺址獲準列入世界遺產(chǎn)名錄,標志著中華五千年文明史得到國際社會認可.良渚古城遺址是人類早期城市文明的范例,實證了中華五千年文明史.考古科學家在測定遺址年齡的過程中利用了“放射性物質(zhì)因衰變而減少”這一規(guī)律.已知樣本中碳14的質(zhì)量N隨時間T(單位:年)的衰變規(guī)律滿足(表示碳14原有的質(zhì)量),則經(jīng)過5730年后,碳14的質(zhì)量變?yōu)樵瓉淼?/span>______;經(jīng)過測定,良渚古城遺址文物樣本中碳14的質(zhì)量是原來的至,據(jù)此推測良渚古城存在的時期距今約在5730年到______年之間.(參考數(shù)據(jù):,,)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在一個半圓中有兩個互切的內(nèi)切半圓,由三個半圓弧圍成曲邊三角形,作兩個內(nèi)切半圓的公切線把曲邊三角形分隔成兩塊,阿基米德發(fā)現(xiàn)被分隔的這兩塊的內(nèi)切圓是同樣大小的,由于其形狀很像皮匠用來切割皮料的刀子,他稱此為“皮匠刀定理”,如圖,若,則陰影部分與最大半圓的面積比為( )
A.B.
C.D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線:的焦點為,為的準線,軸,軸,、交拋物線于、兩點,交于、兩點,已知的面積是的2倍,則中點到軸的距離的最小值為( )
A.B.1C.D.2
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com