【題目】函數(shù)是定義在上的偶函數(shù),周期是4,當(dāng)時(shí),.則方程的根的個(gè)數(shù)為( )

A.3B.4C.5D.6

【答案】C

【解析】

由偶函數(shù)得出函數(shù)上的解析式,結(jié)合周期作出函數(shù)的圖象,再作函數(shù)圖象,觀察這兩個(gè)函數(shù)圖象公共點(diǎn),由時(shí),,而,因此在無(wú)交點(diǎn),是它們的一個(gè)交點(diǎn),注意在點(diǎn)前面還有一交點(diǎn)(可從導(dǎo)數(shù)即切線(xiàn)斜率說(shuō)明).然后才可得結(jié)論.

方程的根的個(gè)數(shù)就是函數(shù)圖象的交點(diǎn)的個(gè)數(shù).

由于是偶函數(shù),因此由題意知時(shí),,作出函數(shù)的圖象,再作出的圖象,它們?cè)?/span>上有3個(gè)交點(diǎn),由時(shí),,而,因此在無(wú)交點(diǎn),是一個(gè)交點(diǎn),

在點(diǎn)處時(shí),的切線(xiàn)為,,因此處的切線(xiàn)與的圖象有相交(有兩個(gè)公共點(diǎn)),從而的圖象有兩個(gè)交點(diǎn).

所以函數(shù)圖象有5個(gè)交點(diǎn).即方程5個(gè)根.

故選:C

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),

(1)當(dāng)時(shí),討論函數(shù)的單調(diào)性

(2)當(dāng)時(shí),,對(duì)任意,都有恒成立,求實(shí)數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)一個(gè)正三棱柱,每條棱長(zhǎng)都相等,一只螞蟻從上底面的某頂點(diǎn)出發(fā),每次只沿著棱爬行并爬到另一個(gè)頂點(diǎn),算一次爬行,若它選擇三個(gè)方向爬行的概率相等,若螞蟻爬行10次,仍然在上底面的概率為,則為(

A.B.

C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖, 為圓的直徑,點(diǎn), 在圓上, ,矩形和圓所在的平面互相垂直,已知,

(Ⅰ)求證:平面平面

(Ⅱ)求直線(xiàn)與平面所成角的大;

(Ⅲ)當(dāng)的長(zhǎng)為何值時(shí),二面角的大小為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的離心率為,焦距為,與拋物線(xiàn)有公共焦點(diǎn).

1)求橢圓C1與拋物線(xiàn)的方程;

2)已知直線(xiàn)是圓的一條切線(xiàn),與橢圓C1交于兩點(diǎn),若直線(xiàn)斜率存在且不為,在橢圓C1上存在點(diǎn),使,其中為坐標(biāo)原點(diǎn),求實(shí)數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知定點(diǎn),圓,點(diǎn)為圓上動(dòng)點(diǎn),線(xiàn)段的垂直平分線(xiàn)交于點(diǎn),記的軌跡為曲線(xiàn).

1)求曲線(xiàn)的方程;

2)過(guò)點(diǎn)作平行直線(xiàn),分別交曲線(xiàn)于點(diǎn)、和點(diǎn)、,求四邊形面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)滿(mǎn)足:①定義為;②.

1)求的解析式;

2)若;均有成立,求的取值范圍;

3)設(shè),試求方程的解.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某氣象站統(tǒng)計(jì)了4月份甲、乙兩地的天氣溫度(單位),統(tǒng)計(jì)數(shù)據(jù)的莖葉圖如圖所示,

1)根據(jù)所給莖葉圖利用平均值和方差的知識(shí)分析甲,乙兩地氣溫的穩(wěn)定性;

2)氣象主管部門(mén)要從甲、乙兩地各隨機(jī)抽取一天的天氣溫度,若甲、乙兩地的溫度之和大于或等于,則被稱(chēng)為甲、乙兩地往來(lái)溫度適宜天氣,求甲、乙兩地往來(lái)溫度適宜天氣的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某工廠為提高生產(chǎn)效率,開(kāi)展技術(shù)創(chuàng)新活動(dòng),提出了完成某項(xiàng)生產(chǎn)任務(wù)的兩種新的生產(chǎn)方式,為比較兩種生產(chǎn)方式的效率,選取40名工人,將他們隨機(jī)分成兩組,每組20.第一組工人用第一種生產(chǎn)方式,第二組工人用第二種生產(chǎn)方式,根據(jù)工人完成生產(chǎn)任務(wù)的工作時(shí)間(單位:min)繪制了如圖所示的莖葉圖:

1)根據(jù)莖葉圖判斷哪種生產(chǎn)方式的效率更高?并說(shuō)明理由;

2)求40名工人完成生產(chǎn)任務(wù)所需時(shí)間的中位數(shù),并將完成生產(chǎn)任務(wù)所需時(shí)間超過(guò)和不超過(guò)的工人數(shù)填入下面的列聯(lián)表,再根據(jù)列聯(lián)表,能否有99.9%的把握認(rèn)為兩種生產(chǎn)方式的效率有差異?

超過(guò)

不超過(guò)

第一種生產(chǎn)方式

第二種生產(chǎn)方式

附:,

0.050

0.010

0.001

3.841

6.635

10.828

查看答案和解析>>

同步練習(xí)冊(cè)答案